Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Distinct Lipidomic Landscapes Associated with Clinical Stages of Urothelial Cancer of the Bladder.

Sun, 30/07/2017 - 12:06
Related Articles Distinct Lipidomic Landscapes Associated with Clinical Stages of Urothelial Cancer of the Bladder. Eur Urol Focus. 2017 Apr 20;: Authors: Piyarathna DWB, Rajendiran TM, Putluri V, Vantaku V, Soni T, von Rundstedt FC, Donepudi SR, Jin F, Maity S, Ambati CR, Dong J, Gödde D, Roth S, Störkel S, Degener S, Michailidis G, Lerner SP, Pennathur S, Lotan Y, Coarfa C, Sreekumar A, Putluri N Abstract BACKGROUND: The first global lipidomic profiles associated with urothelial cancer of the bladder (UCB) and its clinical stages associated with progression were identified. OBJECTIVE: To identify lipidomic signatures associated with survival and different clinical stages of UCB. DESIGN, SETTING, AND PARTICIPANTS: Pathologically confirmed 165 bladder-derived tissues (126 UCB, 39 benign adjacent or normal bladder tissues). UCB tissues included Ta (n=16), T1 (n=30), T2 (n=43), T3 (n=27), and T4 (n=9); lymphovascular invasion (LVI) positive (n=52) and negative (n=69); and lymph node status N0 (n=28), N1 (n=11), N2 (n=9), N3 (n=3), and Nx (n=75). RESULTS AND LIMITATIONS: UCB tissues have higher levels of phospholipids and fatty acids, and reduced levels of triglycerides compared with benign tissues. A total of 59 genes associated with altered lipids in UCB strongly correlate with patient survival in an UCB public dataset. Within UCB, there was a progressive decrease in the levels of phosphatidylserine (PS), phosphatidylethanolamines (PEs), and phosphocholines, whereas an increase in the levels of diacylglycerols (DGs) with tumor stage. Transcript and protein expression of phosphatidylserine synthase 1, which converts DGs to PSs, decreased progressively with tumor stage. Levels of DGs and lyso-PEs were significantly elevated in tumors with LVI and lymph node involvement, respectively. Lack of carcinoma in situ and treatment information is the limitation of our study. CONCLUSIONS: To date, this is the first study describing the global lipidomic profiles associated with UCB and identifies lipids associated with tumor stages, LVI, and lymph node status. Our data suggest that triglycerides serve as the primary energy source in UCB, while phospholipid alterations could affect membrane structure and/or signaling associated with tumor progression. PATIENT SUMMARY: Lipidomic alterations identified in this study set the stage for characterization of pathways associated with these altered lipids that, in turn, could inform the development of first-of-its-kind lipid-based noninvasive biomarkers and novel therapeutic targets for aggressive urothelial cancer of the bladder. PMID: 28753886 [PubMed - as supplied by publisher]

High-throughput metabolomics for discovering potential metabolite biomarkers and metabolic mechanism from APPswe/PS1dE9 transgenic model of Alzheimer's disease.

Sat, 29/07/2017 - 14:48
Related Articles High-throughput metabolomics for discovering potential metabolite biomarkers and metabolic mechanism from APPswe/PS1dE9 transgenic model of Alzheimer's disease. J Proteome Res. 2017 Jul 28;: Authors: Yu J, Kong L, Zhang A, Han Y, Liu Z, Sun H, Liu L, Wang X Abstract Alzheimer's disease (AD), a neurodegenerative disorder, is the major form of dementia. As AD is an irreversible disease, it is necessary to reinforce earlier intervention. However, the potential biomarkers on preclinical AD are still not clearly. In this study, urinary metabolomics based on ultra-high performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry was performed for delineating the metabolic changes and potential early biomarkers in APPswe/PS1dE9 (APP/PS1) transgenic mice. Compared to wide-type, a total of 24 differential metabolites were identified in transgenic mice using multivariate statistical analysis. Among them, 10 metabolites were significantly up-regulated and 14 metabolites were down-regulated. Based on these potential biomarkers, metabolic pathway analysis found that pentose and glucuronate interconversions, glyoxylate and dicarboxylate metabolism, starch and sucrose metabolism, citrate cycle, tryptophan metabolism and arginine and proline metabolism were disturbed in APP/PS1 mice. Our study manifested that endogenous metabolites in the urine of APP/PS1 mice have changed priors to the emergence of learning and cognitive impairment, which may be associated with abnormal NO production pathways and metabolic disorders of the monoaminergic neurotransmitters. In conclusion, this study showed that metabolomics provides an early indicator of the disease occurrence. PMID: 28753016 [PubMed - as supplied by publisher]

A Detailed Investigation and Comparison of the XCMS and MZmine 2 Chromatogram Construction and Chromatographic Peak Detection Methods for Preprocessing Mass Spectrometry Metabolomics Data.

Sat, 29/07/2017 - 14:48
Related Articles A Detailed Investigation and Comparison of the XCMS and MZmine 2 Chromatogram Construction and Chromatographic Peak Detection Methods for Preprocessing Mass Spectrometry Metabolomics Data. Anal Chem. 2017 Jul 28;: Authors: Myers OD, Sumner SJ, Li S, Barnes S, Du X Abstract XCMS and MZmine 2 are two widely used software packages for preprocessing untargeted LC/MS metabolomics data. Both construct extracted ion chromatograms (EICs) and detect peaks from the EICs, the first two steps in the data preprocessing workflow. While both packages have performed admirably in peak picking, they also detect a problematic number of false positive EIC peaks and can also fail to detect real EIC peaks. The former and latter translate downstream into spurious and missing compounds, and present significant limitations with most existing software packages that preprocess untargeted mass spectrometry metabolomics data. We seek to understand the specific reasons why XCMS and MZmine 2 find the false positive EIC peaks that they do, and in what ways they fail to detect real compounds. We investigate differences of EIC construction methods in XCMS and MZmine 2 and find several problems in the XCMS centWave peak detection algorithm which we show are partly responsible for the false positive and false negative compound identifications. In addition, we find a problem with MZmine 2's use of centWave. We hope that a detailed understanding of the XCMS and MZmine 2 algorithms will allow users to work with them more effectively, and will also help with future algorithmic development. PMID: 28752757 [PubMed - as supplied by publisher]

One Step Forward for Reducing False Positive and False Negative Compound Identifications from Mass Spectrometry Metabolomics Data: New Algorithms for Constructing Extracted Ion Chromatograms and Detecting Chromatographic Peaks.

Sat, 29/07/2017 - 14:48
Related Articles One Step Forward for Reducing False Positive and False Negative Compound Identifications from Mass Spectrometry Metabolomics Data: New Algorithms for Constructing Extracted Ion Chromatograms and Detecting Chromatographic Peaks. Anal Chem. 2017 Jul 28;: Authors: Myers OD, Sumner SJ, Li S, Barnes S, Du X Abstract False positive and false negative peaks detected from extracted ion chromatograms (EIC) are an urgent problem with existing software packages that preprocess untargeted liquid or gas chromatography-mass spectrometry metabolomics data because they can translate downstream into spurious or missing compound identifications. We have developed new algorithms that carry out the sequential construction of EICs and detection of EIC peaks. We compare the new algorithms to two popular software packages XCMS and MZmine 2, and present evidence that these new algorithms detect significantly fewer false positives. Regarding the detection of compounds known to be present in the data, the new algorithms perform at least as well as XCMS and MZmine 2. Furthermore, we present evidence that mass tolerance in m/z should be favored rather than mass tolerance in ppm in the process of constructing EICs. The mass tolerance parameter plays a critical role in the EIC construction process and can have immense impact on the detection of EIC peaks. PMID: 28752754 [PubMed - as supplied by publisher]

NMR-based metabolomics reveals the metabolite profiles of Vibrio parahaemolyticus under ferric iron stimulation.

Sat, 29/07/2017 - 14:48
Related Articles NMR-based metabolomics reveals the metabolite profiles of Vibrio parahaemolyticus under ferric iron stimulation. J Microbiol. 2017 Aug;55(8):628-634 Authors: Zhou J, Lu C, Zhang D, Ma C, Su X Abstract Vibrio parahaemolyticus is a halophilic bacterium endemic to coastal areas, and its pathogenicity has caused widespread seafood poisoning. In our previous research, the protein expression of V. parahaemolyticus in Fe(3+) medium was determined using isobaric tags for relative and absolute quantitation (iTRAQ). Here, nuclear magnetic resonance (NMR) was used to detect changes in the V. parahaemolyticus metabolome. NMR spectra were obtained using methanol-water extracts of intracellular metabolites from V. parahaemolyticus under various culture conditions, and 62 metabolites were identified, including serine, arginine, alanine, ornithine, tryptophan, glutamine, malate, NAD(+), NADP(+), oxypurinol, xanthosine, dCTP, uracil, thymine, hypoxanthine, and betaine. Among these, 21 metabolites were up-regulated after the stimulation of the cells by ferric iron, and 9 metabolites were down-regulated. These metabolites are involved in amino acid and protein synthesis, energy metabolism, DNA and RNA synthesis and osmolality. Based on these results, we conclude that Fe(3+) influences the metabolite profiles of V. parahaemolyticus. PMID: 28752295 [PubMed - in process]

The Munich MIDY Pig Biobank - A unique resource for studying organ crosstalk in diabetes.

Sat, 29/07/2017 - 14:48
Related Articles The Munich MIDY Pig Biobank - A unique resource for studying organ crosstalk in diabetes. Mol Metab. 2017 Aug;6(8):931-940 Authors: Blutke A, Renner S, Flenkenthaler F, Backman M, Haesner S, Kemter E, Ländström E, Braun-Reichhart C, Albl B, Streckel E, Rathkolb B, Prehn C, Palladini A, Grzybek M, Krebs S, Bauersachs S, Bähr A, Brühschwein A, Deeg CA, De Monte E, Dmochewitz M, Eberle C, Emrich D, Fux R, Groth F, Gumbert S, Heitmann A, Hinrichs A, Keßler B, Kurome M, Leipig-Rudolph M, Matiasek K, Öztürk H, Otzdorff C, Reichenbach M, Reichenbach HD, Rieger A, Rieseberg B, Rosati M, Saucedo MN, Schleicher A, Schneider MR, Simmet K, Steinmetz J, Übel N, Zehetmaier P, Jung A, Adamski J, Coskun Ü, Hrabě de Angelis M, Simmet C, Ritzmann M, Meyer-Lindenberg A, Blum H, Arnold GJ, Fröhlich T, Wanke R, Wolf E Abstract OBJECTIVE: The prevalence of diabetes mellitus and associated complications is steadily increasing. As a resource for studying systemic consequences of chronic insulin insufficiency and hyperglycemia, we established a comprehensive biobank of long-term diabetic INS(C94Y) transgenic pigs, a model of mutant INS gene-induced diabetes of youth (MIDY), and of wild-type (WT) littermates. METHODS: Female MIDY pigs (n = 4) were maintained with suboptimal insulin treatment for 2 years, together with female WT littermates (n = 5). Plasma insulin, C-peptide and glucagon levels were regularly determined using specific immunoassays. In addition, clinical chemical, targeted metabolomics, and lipidomics analyses were performed. At age 2 years, all pigs were euthanized, necropsied, and a broad spectrum of tissues was taken by systematic uniform random sampling procedures. Total beta cell volume was determined by stereological methods. A pilot proteome analysis of pancreas, liver, and kidney cortex was performed by label free proteomics. RESULTS: MIDY pigs had elevated fasting plasma glucose and fructosamine concentrations, C-peptide levels that decreased with age and were undetectable at 2 years, and an 82% reduced total beta cell volume compared to WT. Plasma glucagon and beta hydroxybutyrate levels of MIDY pigs were chronically elevated, reflecting hallmarks of poorly controlled diabetes in humans. In total, ∼1900 samples of different body fluids (blood, serum, plasma, urine, cerebrospinal fluid, and synovial fluid) as well as ∼17,000 samples from ∼50 different tissues and organs were preserved to facilitate a plethora of morphological and molecular analyses. Principal component analyses of plasma targeted metabolomics and lipidomics data and of proteome profiles from pancreas, liver, and kidney cortex clearly separated MIDY and WT samples. CONCLUSIONS: The broad spectrum of well-defined biosamples in the Munich MIDY Pig Biobank that will be available to the scientific community provides a unique resource for systematic studies of organ crosstalk in diabetes in a multi-organ, multi-omics dimension. PMID: 28752056 [PubMed - in process]

Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode.

Sat, 29/07/2017 - 14:48
Related Articles Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode. Front Plant Sci. 2017;8:1134 Authors: Lin F, Williams BJ, Thangella PAV, Ladak A, Schepmoes AA, Olivos HJ, Zhao K, Callister SJ, Bartley LE Abstract Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic, and metabolite analyses of the rice elongating internode. Cellulose, lignin, and xylose increase as a percentage of cell wall material along eight segments of the second rice internode (internode II) at booting stage, from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested proteins from this internode at booting reveals 2,547 proteins with at least two unique peptides in two biological replicates. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including a leucine rich repeat-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS/MS of hot methanol-extracted secondary metabolites from internode II at four stages (booting/elongation, early mature, mature, and post mature) indicates that internode secondary metabolites are distinct from those of roots and leaves, and differ across stem maturation. This work fills a void of in-depth proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes characteristic of internode development, toward improving grass agronomic properties. PMID: 28751896 [PubMed]

Identification of the Components Involved in Cyclic Di-AMP Signaling in Mycoplasma pneumoniae.

Sat, 29/07/2017 - 14:48
Related Articles Identification of the Components Involved in Cyclic Di-AMP Signaling in Mycoplasma pneumoniae. Front Microbiol. 2017;8:1328 Authors: Blötz C, Treffon K, Kaever V, Schwede F, Hammer E, Stülke J Abstract Bacteria often use cyclic dinucleotides as second messengers for signal transduction. While the classical molecule c-di-GMP is involved in lifestyle selection, the functions of the more recently discovered signaling nucleotide cyclic di-AMP are less defined. For many Gram-positive bacteria, c-di-AMP is essential for growth suggesting its involvement in a key cellular function. We have analyzed c-di-AMP signaling in the genome-reduced pathogenic bacterium Mycoplasma pneumoniae. Our results demonstrate that these bacteria produce c-di-AMP, and we could identify the diadenylate cyclase CdaM (MPN244). This enzyme is the founding member of a novel family of diadenylate cyclases. Of two potential c-di-AMP degrading phosphodiesterases, only PdeM (MPN549) is active in c-di-AMP degradation, whereas NrnA (MPN140) was reported to degrade short oligoribonucleotides. As observed in other bacteria, both the c-di-AMP synthesizing and the degrading enzymes are essential for M. pneumoniae suggesting control of a major homeostatic process. To obtain more insights into the nature of this process, we have identified a c-di-AMP-binding protein from M. pneumoniae, KtrC. KtrC is the cytoplasmic regulatory subunit of the low affinity potassium transporter KtrCD. It is established that binding of c-di-AMP inhibits the KtrCD activity resulting in a limitation of potassium uptake. Our results suggest that the control of potassium homeostasis is the essential function of c-di-AMP in M. pneumoniae. PMID: 28751888 [PubMed]

Impaired Mitochondrial Fusion, Autophagy, Biogenesis and Dysregulated Lipid Metabolism is associated with Preeclampsia.

Sat, 29/07/2017 - 14:48
Related Articles Impaired Mitochondrial Fusion, Autophagy, Biogenesis and Dysregulated Lipid Metabolism is associated with Preeclampsia. Exp Cell Res. 2017 Jul 24;: Authors: Zhou X, Han TL, Chen H, Baker PN, Qi H, Zhang H Abstract Preeclampsia(PE) is a pregnancy complication that is diagnosed by the new onset of hypertension and proteinuria. The etiology of PE remains unclear; however, growing evidence indicates that mitochondrial impairment contributes to the pathogenesis. Therefore, we aim to investigate the function of mitochondria in the development of PE. The mitochondrial metabolome in preeclamptic (n = 11) and normal (n = 11) placentas were analyzed using Gas chromatography-mass spectrometry (GC-MS). Student's t-tests and receiver operating characteristic (ROC) curves were conducted to determine which mitochondrial metabolites differed significantly between the two groups. The Pathway Activity Profiling (PAPi) R package was used to predict which metabolic pathways were affected by PE. Western blot analysis was performed to identify the candidate proteins which were associated with mitochondrial repair regulation. GC-MS analysis demonstrated that higher levels of 38 metabolites and lower levels of 2 metabolites were observed in the placenta of patients with severe PE (sPE). Five fatty acids had an area under the ROC curve above 90%. Furthermore, we revealed abnormal regulation of mitochondrial dynamics, autophagy, and biogenesis in sPE. Our discoveries indicate that the compromised lipid metabolism in sPE may result from dysfunctional mitochondria, thus revealing new insights into the etiology of the disease. PMID: 28751269 [PubMed - as supplied by publisher]

GC-MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers.

Sat, 29/07/2017 - 14:48
Related Articles GC-MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. J Pharm Biomed Anal. 2017 Jul 17;: Authors: Lubes G, Goodarzi M Abstract A biomarker can be a metabolite, coming from a metabolic pathway or cell process, which might be employed in the diagnostic of diseases, predict patient response towards chemical therapies and/or monitor disease recurrences. Biomarkers, e.g. aldehydes or hydrocarbons, are often identified from different body fluids such as blood, urine, serum, saliva or from various tissues samples, and their concentration can vary from one sample to the other. However, the detection and the action of these biomarkers for diseases is a complicated process. Cancer is one of the main cause of death worldwide. The main characteristic of cancerous tumor is the uncontrolled growing of cells inside the organism. Likely, these uncontrolled growths are as consequence changes in the metabolism that could be analytically monitored. Depending on where the cancer cells are located, they provide different characteristics profiles. These profiles as fingerprints are used for differentiation in a comparison to normal cells. This critical study aimed at highlighting the latest progress in this area, especially in the employment of gas chromatography for the monitoring of volatile organic compounds (VOCs) and the identification of possible molecules used as biomarkers for cancer therapy. PMID: 28750734 [PubMed - as supplied by publisher]

Metabolomics of Rhabdomyosarcoma Cell During Echovirus 30 Infection.

Sat, 29/07/2017 - 14:48
Related Articles Metabolomics of Rhabdomyosarcoma Cell During Echovirus 30 Infection. Virol J. 2017 Jul 27;14(1):144 Authors: Tiwari S, Dhole TN Abstract BACKGROUND: Echovirus 30 (E30) causes acute aseptic meningitis. Viral replication requires energy and macromolecular precursors derived from the metabolic network of the host cell. The effect of viral infection within a host cell metabolic activity remains unclear. METHODS: To gain an insight into cell-virus interaction during E30 infection we used a human rhabdomyosarcoma cell line. In a new approach to metabolomics, (1H) NMR was used to measure the level of various cellular metabolites at different times of infection and morphological examination of the cells. Statistical analysis was done by using Confidence interval (CI) 95% and One-way ANOVA test. RESULTS: The(1)H NMR metabolite spectrum signals were observed between mock infected and virus infected cells. Both mock infected and virus infected cells utilized glucose through metabolic pathways and released metabolic end products. Upon infection, the concentration of Alanine, Lactate, Acetate, Glutamate, Tyrosine, Histidine, Phenylalanine, Creatine, Choline and Formate, increased. Interestingly, all of these augmented metabolites were decreased during later stage of infection. The cells showed wide-ranging lipid signals at the end of infection, which correlates with the morphological changes as apoptosis (programmed cell death) of cells was observed. A significant association was found between time interval (12 h, 24 h, and 48 h) and metabolites likewise Alanin, Lactate, Acetate, Glutamate, Tyrosine, Histidine, Phenylalanine, Creatine, Choline and Formate respectively released by cell during infection, which is highly significant (p < 0.01). CONCLUSION: Progressive breakdown and utilization of all cellular components were observed as the infection increased. This study is useful for monitoring the cellular metabolic changes during viral infection. PMID: 28750646 [PubMed - in process]

Metabolome alterations in severe critical illness and vitamin D status.

Sat, 29/07/2017 - 14:48
Related Articles Metabolome alterations in severe critical illness and vitamin D status. Crit Care. 2017 Jul 28;21(1):193 Authors: Lasky-Su J, Dahlin A, Litonjua AA, Rogers AJ, McGeachie MJ, Baron RM, Gazourian L, Barragan-Bradford D, Fredenburgh LE, Choi AMK, Mogensen KM, Quraishi SA, Amrein K, Christopher KB Abstract BACKGROUND: Metabolic homeostasis is substantially disrupted in critical illness. Given the pleiotropic effects of vitamin D, we hypothesized that metabolic profiles differ between critically ill patients relative to their vitamin D status. METHODS: We performed a metabolomics study on biorepository samples collected from a single academic medical center on 65 adults with systemic inflammatory response syndrome or sepsis treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to vitamin D status in critical illness, we first generated metabolomic data using gas and liquid chromatography mass spectroscopy. We followed this by partial least squares-discriminant analysis to identify individual metabolites that were significant. We then interrogated the entire metabolomics profile using metabolite set enrichment analysis to identify groups of metabolites and pathways that were differentiates of vitamin D status. Finally we performed logistic regression to construct a network model of chemical-protein target interactions important in vitamin D status. RESULTS: Metabolomic profiles significantly differed in critically ill patients with 25(OH)D ≤ 15 ng/ml relative to those with levels >15 ng/ml. In particular, increased 1,5-anhydroglucitol, tryptophan betaine, and 3-hydroxyoctanoate as well as decreased 2-arachidonoyl-glycerophosphocholine and N-6-trimethyllysine were strong predictors of 25(OH)D >15 ng/ml. The combination of these five metabolites led to an area under the curve for discrimination for 25(OH)D > 15 ng/ml of 0.82 (95% CI 0.71-0.93). The metabolite pathways related to glutathione metabolism and glutamate metabolism are significantly enriched with regard to vitamin D status. CONCLUSION: Vitamin D status is associated with differential metabolic profiles during critical illness. Glutathione and glutamate pathway metabolism, which play principal roles in redox regulation and immunomodulation, respectively, were significantly altered with vitamin D status. PMID: 28750641 [PubMed - in process]

Comprehensive molecular tumor profiling in radiation oncology: How it could be used for precision medicine.

Sat, 29/07/2017 - 14:48
Related Articles Comprehensive molecular tumor profiling in radiation oncology: How it could be used for precision medicine. Cancer Lett. 2016 Nov 01;382(1):118-126 Authors: Eke I, Makinde AY, Aryankalayil MJ, Ahmed MM, Coleman CN Abstract New technologies enabling the analysis of various molecules, including DNA, RNA, proteins and small metabolites, can aid in understanding the complex molecular processes in cancer cells. In particular, for the use of novel targeted therapeutics, elucidation of the mechanisms leading to cell death or survival is crucial to eliminate tumor resistance and optimize therapeutic efficacy. While some techniques, such as genomic analysis for identifying specific gene mutations or epigenetic testing of promoter methylation, are already in clinical use, other "omics-based" assays are still evolving. Here, we provide an overview of the current status of molecular profiling methods, including promising research strategies, as well as possible challenges, and their emerging role in radiation oncology. PMID: 26828133 [PubMed - indexed for MEDLINE]

Differential metabolic profiles associated to movement behaviour of stream-resident brown trout (Salmo trutta).

Fri, 28/07/2017 - 14:08
Related Articles Differential metabolic profiles associated to movement behaviour of stream-resident brown trout (Salmo trutta). PLoS One. 2017;12(7):e0181697 Authors: Oromi N, Jové M, Pascual-Pons M, Royo JL, Rocaspana R, Aparicio E, Pamplona R, Palau A, Sanuy D, Fibla J, Portero-Otin M Abstract The mechanisms that can contribute in the fish movement strategies and the associated behaviour can be complex and related to the physiology, genetic and ecology of each species. In the case of the brown trout (Salmo trutta), in recent research works, individual differences in mobility have been observed in a population living in a high mountain river reach (Pyrenees, NE Spain). The population is mostly sedentary but a small percentage of individuals exhibit a mobile behavior, mainly upstream movements. Metabolomics can reflect changes in the physiological process and can determine different profiles depending on behaviour. Here, a non-targeted metabolomics approach was used to find possible changes in the blood metabolomic profile of S. trutta related to its movement behaviour, using a minimally invasive sampling. Results showed a differentiation in the metabolomic profiles of the trouts and different level concentrations of some metabolites (e.g. cortisol) according to the home range classification (pattern of movements: sedentary or mobile). The change in metabolomic profiles can generally occur during the upstream movement and probably reflects the changes in metabolite profile from the non-mobile season to mobile season. This study reveals the contribution of the metabolomic analyses to better understand the behaviour of organisms. PMID: 28750027 [PubMed - in process]

A Metabolomics-Guided Exploration of the Phytochemical Constituents of Vernonia fastigiata with the Aid of Pressurized Hot Water Extraction and Liquid Chromatography-Mass Spectrometry.

Fri, 28/07/2017 - 14:08
Related Articles A Metabolomics-Guided Exploration of the Phytochemical Constituents of Vernonia fastigiata with the Aid of Pressurized Hot Water Extraction and Liquid Chromatography-Mass Spectrometry. Molecules. 2017 Jul 27;22(8): Authors: Masike K, Khoza BS, Steenkamp PA, Smit E, Dubery IA, Madala NE Abstract Vernonia fastigiata is a multi-purpose nutraceutical plant with interesting biological properties. However, very little is known about its phytochemical composition and, thus the need for its phytochemical characterization. In the current study, an environmentally friendly method, pressurized hot water extraction (PHWE), was used to extract metabolites from the leaves of V. fastigiata at various temperatures (50 °C, 100 °C, 150 °C and 200 °C). Ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-qTOF-MS) analysis in combination with chemometric methods, particularly principal component analysis (PCA) and liquid/gas chromatography mass spectrometry (XCMS) cloud plots, were used to descriptively visualize the data and identify significant metabolites extracted at various temperatures. A total of 25 different metabolites, including hydroxycinnamic acid derivatives, clovamide, deoxy-clovamide and flavonoids, were noted for the first time in this plant. Overall, an increase in extraction temperature resulted in an increase in metabolite extraction during PHWE. This study is the first scientific report on the phytochemical composition of V. fastigiata, providing insight into the components of the chemo-diversity of this important plant. PMID: 28749445 [PubMed - in process]

Evaluation of the Nutritional Quality of Chinese Kale (Brassica alboglabra Bailey) Using UHPLC-Quadrupole-Orbitrap MS/MS-Based Metabolomics.

Fri, 28/07/2017 - 14:08
Related Articles Evaluation of the Nutritional Quality of Chinese Kale (Brassica alboglabra Bailey) Using UHPLC-Quadrupole-Orbitrap MS/MS-Based Metabolomics. Molecules. 2017 Jul 27;22(8): Authors: Wang YQ, Hu LP, Liu GM, Zhang DS, He HJ Abstract Chinese kale (Brassica alboglabra Bailey) is a widely consumed vegetable which is rich in antioxidants and anticarcinogenic compounds. Herein, we used an untargeted ultra-high-performance liquid chromatography (UHPLC)-Quadrupole-Orbitrap MS/MS-based metabolomics strategy to study the nutrient profiles of Chinese kale. Seven Chinese kale cultivars and three different edible parts were evaluated, and amino acids, sugars, organic acids, glucosinolates and phenolic compounds were analysed simultaneously. We found that two cultivars, a purple-stem cultivar W1 and a yellow-flower cultivar Y1, had more health-promoting compounds than others. The multivariate statistical analysis results showed that gluconapin was the most important contributor for discriminating both cultivars and edible parts. The purple-stem cultivar W1 had higher levels of some phenolic acids and flavonoids than the green stem cultivars. Compared to stems and leaves, the inflorescences contained more amino acids, glucosinolates and most of the phenolic acids. Meanwhile, the stems had the least amounts of phenolic compounds among the organs tested. Metabolomics is a powerful approach for the comprehensive understanding of vegetable nutritional quality. The results provide the basis for future metabolomics-guided breeding and nutritional quality improvement. PMID: 28749430 [PubMed - in process]

Protocols and Applications of Cellular Metabolomics in Safety Studies Using Precision-Cut Tissue Slices and Carbon 13 NMR.

Fri, 28/07/2017 - 14:08
Related Articles Protocols and Applications of Cellular Metabolomics in Safety Studies Using Precision-Cut Tissue Slices and Carbon 13 NMR. Methods Mol Biol. 2017;1641:259-279 Authors: Baverel G, El Hage M, Martin G Abstract Numerous xenobiotics are toxic to human and animal cells by interacting with their metabolism, but the precise metabolic step affected and the biochemical mechanism behind such a toxicity remain often unknown. In an attempt to reduce the ignorance in this field, we have developed a new approach called cellular metabolomics. This approach, developed in vitro, provides a panoramic view not only of the pathways involved in the metabolism of physiological substrates of any normal or pathological human or animal cell but also of the beneficial and adverse effects of xenobiotics on these metabolic pathways. Unlike many cell lines, precision-cut tissue slices, for which there is a renewed interest, remain metabolically differentiated for at least 24-48 h and allow to study the effect of xenobiotics during short-term and long-term incubations. Cellular metabolomics (or metabolic flux analysis), which combines enzymatic and carbon 13 NMR measurements with mathematical modeling of metabolic pathways, is illustrated in this brief chapter for studying the effect of insulin on glucose metabolism in rat liver precision-cut slices and of valproate on glutamine metabolism in human renal cortical precision-cut slices. The use of very small amounts of test compounds allows to predict their toxic effect and eventually their beneficial effects very early in the research and development processes. Cellular metabolomics is complementary to other omics approaches, but, unlike them, provides functional, mechanistic, and dynamic pieces of information by measuring enzymatic fluxes. PMID: 28748469 [PubMed - in process]

NMR and MS Methods for Metabolomics.

Fri, 28/07/2017 - 14:08
Related Articles NMR and MS Methods for Metabolomics. Methods Mol Biol. 2017;1641:229-258 Authors: Amberg A, Riefke B, Schlotterbeck G, Ross A, Senn H, Dieterle F, Keck M Abstract Metabolomics, also often referred as "metabolic profiling," is the systematic profiling of metabolites in biofluids or tissues of organisms and their temporal changes. In the last decade, metabolomics has become more and more popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabolomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabolomics, i.e., NMR, UPLC-MS, and GC-MS, have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabolomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation to determining the measurement details of all analytical platforms, and finally to discussing the corresponding specific steps of data analysis. PMID: 28748468 [PubMed - in process]

Confirmation that MAT1A p.Ala259Val mutation causes autosomal dominant hypermethioninemia.

Fri, 28/07/2017 - 14:08
Related Articles Confirmation that MAT1A p.Ala259Val mutation causes autosomal dominant hypermethioninemia. Mol Genet Metab Rep. 2017 Dec;13:9-12 Authors: Muriello MJ, Viall S, Bottiglieri T, Cusmano-Ozog K, Ferreira CR Abstract Methionine adenosyltransferase (MAT) I/III deficiency is an inborn error of metabolism caused by mutations in MAT1A, encoding the catalytic subunit of MAT responsible for the synthesis of S-adenosylmethionine, and is characterized by persistent hypermethioninemia. While historically considered a recessive disorder, a milder autosomal dominant form of MAT I/III deficiency occurs, though only the most common mutation p.Arg264His has ample evidence to prove dominant inheritance. We report a case of hypermethioninemia caused by the p.Ala259Val substitution and provide evidence of autosomal dominant inheritance by showing both maternal inheritance of the mutation and concomitant hypermethioninemia. The p.Ala259Val mutation falls in the dimer interface, and thus likely leads to dominant inheritance by a similar mechanism to that described in the previously reported dominant negative mutation, that is, by means of interference with subunits encoded by the wild-type allele. PMID: 28748147 [PubMed]

NMR-based metabonomics and correlation analysis reveal potential biomarkers associated with chronic atrophic gastritis.

Fri, 28/07/2017 - 14:08
Related Articles NMR-based metabonomics and correlation analysis reveal potential biomarkers associated with chronic atrophic gastritis. J Pharm Biomed Anal. 2017 Jan 05;132:77-86 Authors: Cui J, Liu Y, Hu Y, Tong J, Li A, Qu T, Qin X, Du G Abstract Chronic atrophic gastritis (CAG) is one of the most important pre-cancerous states with a high prevalence. Exploring of the underlying mechanism and potential biomarkers is of significant importance for CAG. In the present work, (1)H NMR-based metabonomics with correlative analysis was performed to analyze the metabolic features of CAG. 19 plasma metabolites and 18 urine metabolites were enrolled to construct the circulatory and excretory metabolome of CAG, which was in response to alterations of energy metabolism, inflammation, immune dysfunction, as well as oxidative stress. 7 plasma biomarkers and 7 urine biomarkers were screened to elucidate the pathogenesis of CAG based on the further correlation analysis with biochemical indexes. Finally, 3 plasma biomarkers (arginine, succinate and 3-hydroxybutyrate) and 2 urine biomarkers (α-ketoglutarate and valine) highlighted the potential to indicate risks of CAG in virtue of correlation with pepsin activity and ROC analysis. Here, our results paved a way for elucidating the underlying mechanisms in the development of CAG, and provided new avenues for the diagnosis of CAG and presented potential drug targets for treatment of CAG. PMID: 27697573 [PubMed - indexed for MEDLINE]

Pages