PubMed
Metabolic and RNA profiling elucidates proanthocyanidins accumulation in Aglianico grape.
Related Articles
Metabolic and RNA profiling elucidates proanthocyanidins accumulation in Aglianico grape.
Food Chem. 2017 Oct 15;233:52-59
Authors: Rinaldi A, Villano C, Lanzillo C, Tamburrino A, Jourdes M, Teissedre PL, Moio L, Frusciante L, Carputo D, Aversano R
Abstract
Aglianico grapes are known for their high content of proanthocyanidins (PAs), which are responsible for the astringency of wines derived from this cultivar. However, the accumulation of PAs and their genetic control during berry development remain largely unexplored. This work aimed to monitor astringency-causing PAs in Aglianico berries and correlate them with the expression of 14 key genes. Berries were collected during ripening and dissected in skins and seeds. PAs were fractionated and the content of total phenolics, flavans, anthocyanins, tannins reactive towards salivary proteins and tannin structural composition were evaluated. The results provided evidence that PAs were more abundant in seeds than in skins as expected, with differences in the structural composition between tissues, which did not varied during ripening. Expression analysis showed that Aglianico is able to accumulate polyphenols due to its ability to modulate key genes in a tissue-specific manner.
PMID: 28530607 [PubMed - indexed for MEDLINE]
The anti-cancerous drug doxorubicin decreases the c-di-GMP content in Pseudomonas aeruginosa but promotes biofilm formation.
Related Articles
The anti-cancerous drug doxorubicin decreases the c-di-GMP content in Pseudomonas aeruginosa but promotes biofilm formation.
Microbiology. 2016 Oct;162(10):1797-1807
Authors: Groizeleau J, Rybtke M, Andersen JB, Berthelsen J, Liu Y, Yang L, Nielsen TE, Kaever V, Givskov M, Tolker-Nielsen T
Abstract
Current antibiotic treatments are insufficient in eradicating bacterial biofilms, which represent the primary cause of chronic bacterial infections. Thus, there is an urgent need for new strategies to eradicate biofilm infections. The second messenger c-di-GMP is a positive regulator of biofilm formation in many clinically relevant bacteria. It is hypothesized that drugs lowering the intracellular level of c-di-GMP will force biofilm bacteria into a more treatable planktonic lifestyle. To identify compounds capable of lowering c-di-GMP levels in Pseudomonas aeruginosa, we screened 5000 compounds for their potential c-di-GMP-lowering effect using a recently developed c-di-GMP biosensor strain. Our screen identified the anti-cancerous drug doxorubicin as a potent c-di-GMP inhibitor. In addition, the drug decreased the transcription of many biofilm-related genes. However, despite its effect on the c-di-GMP content in P. aeruginosa, doxorubicin was unable to inhibit biofilm formation or disperse established biofilms. On the contrary, the drug was found to promote P. aeruginosa biofilm formation, possibly through release of extracellular DNA from a subpopulation of killed bacteria. Our findings emphasize that lowering of the c-di-GMP content in bacteria might not be sufficient to mediate biofilm inhibition or dispersal.
PMID: 27526691 [PubMed - indexed for MEDLINE]
Energy and lipid metabolism during direct and diapause development in a pierid butterfly.
Related Articles
Energy and lipid metabolism during direct and diapause development in a pierid butterfly.
J Exp Biol. 2016 Oct 01;219(Pt 19):3049-3060
Authors: Lehmann P, Pruisscher P, Posledovich D, Carlsson M, Käkelä R, Tang P, Nylin S, Wheat CW, Wiklund C, Gotthard K
Abstract
Diapause is a fundamental component of the life cycle in the majority of insects living in environments characterized by strong seasonality. The present study addresses poorly understood associations and trade-offs between endogenous diapause duration, thermal sensitivity of development, energetic cost of development and cold tolerance. Diapause intensity, metabolic rate trajectories and lipid profiles of directly developing and diapausing animals were studied using pupae and adults of Pieris napi butterflies from a population in which endogenous diapause has been well studied. Endogenous diapause was terminated after 3 months and termination required chilling. Metabolic and post-diapause development rates increased with diapause duration, while the metabolic cost of post-diapause development decreased, indicating that once diapause is terminated, development proceeds at a low rate even at low temperature. Diapausing pupae had larger lipid stores than the directly developing pupae, and lipids constituted the primary energy source during diapause. However, during diapause, lipid stores did not decrease. Thus, despite lipid catabolism meeting the low energy costs of the diapausing pupae, primary lipid store utilization did not occur until the onset of growth and metamorphosis in spring. In line with this finding, diapausing pupae contained low amounts of mitochondria-derived cardiolipins, which suggests a low capacity for fatty acid β-oxidation. While ontogenic development had a large effect on lipid and fatty acid profiles, only small changes in these were seen during diapause. The data therefore indicate that the diapause lipidomic phenotype is developed early, when pupae are still at high temperature, and retained until post-diapause development.
PMID: 27445351 [PubMed - indexed for MEDLINE]
Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.
Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.
J Pharm Biomed Anal. 2017 Jul 29;145:604-610
Authors: Kellogg JJ, Wallace ED, Graf TN, Oberlies NH, Cech NB
Abstract
Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies.
PMID: 28787673 [PubMed - as supplied by publisher]
MetExtract II: A software suite for stable isotope assisted untargeted metabolomics.
MetExtract II: A software suite for stable isotope assisted untargeted metabolomics.
Anal Chem. 2017 Aug 08;:
Authors: Bueschl C, Kluger B, Neumann NKN, Doppler M, Maschietto V, Thallinger GG, Meng-Reiterer J, Krska R, Schuhmacher R
Abstract
Stable isotope labeling (SIL) techniques have the potential to enhance different aspects of LC-HRMS based, untargeted metabolomics methods including metabolite detection, annotation of unknown metabolites and comparative quantification. In this work, we present MetExtract II, a software toolbox for the detection of biologically derived compounds. It exploits SIL-specific isotope patterns and elution profiles in LC-HRMS(/MS) data. The toolbox consists of three complementary modules (M1-M3): M1 (AllExtract) uses mixtures of uniformly, highly isotope-enriched and native biological samples for the selective detection of the entire accessible metabolome. M2 (TracExtract) is particularly suited to probe the metabolism of endogenous or exogenous secondary metabolites and facilitates the untargeted screening of tracer-derivatives from concurrently metabolized native and uniformly labeled tracer substances. With M3 (FragExtract), MS/MS fragments of corresponding native and uniformly labeled ions are evaluated and automatically assigned with putative sum formulas. Generated results can be graphically illustrated and exported as a comprehensive data matrix that contains all detected pairs of native and labeled metabolite ions that can be used for database queries, metabolome-wide internal standardization and statistical analysis. The software, associated documentation and sample datasets are freely available for non-commercial use at http://metabolomics-ifa.boku.ac.at/metextractII.
PMID: 28787149 [PubMed - as supplied by publisher]
Overcoming Sample Matrix Effect in Quantitative Blood Metabolomics Using Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry.
Overcoming Sample Matrix Effect in Quantitative Blood Metabolomics Using Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry.
Anal Chem. 2017 Aug 08;:
Authors: Chen D, Han W, Su X, Li L, Li L
Abstract
Blood is widely used for discovery metabolomics to search for disease biomarkers. However, blood sample matrix can have a profound effect on metabolome analysis, which can impose an undesirable restriction on the type of blood collection tubes that can be used for blood metabolomics. We investigated the effect of blood sample matrix on metabolome analysis using a high-coverage and quantitative metabolome profiling technique based on differential chemical isotope labeling (CIL) LC-MS. We used (12)C-/(13C)-dansylation LC-MS to perform relative quantification of the amine/phenol submetabolomes of four types of samples (i.e., serum, EDTA-plasma, heparin-plasma and citrate-plasma) collected from healthy individuals and compare their metabolomic results. From the analysis of 80 plasma and serum samples in experimental triplicate, we detected a total of 3651 metabolites with an average of 1818 metabolites per run (n=240). The number of metabolites detected and the precision and accuracy of relative quantification were found to be independent of the sample type. Within each sample type, the metabolome data set could reveal biological variation (e.g., sex separation). Although the relative concentrations of some individual metabolites might be different in the four types of samples, for sex separation, all 66 significant metabolites with larger fold-changes (FC≥2 and p<0.05) found in at least one sample type could be found in the other types of samples with similar or somewhat reduced, but still significant fold-changes. Our results indicate that CIL LC-MS could overcome the sample matrix effect, thereby greatly broadening the scope of blood metabolomics ‒ any blood samples properly collected in routine clinical settings, including those in biobanks originally used for other purposes, can potentially be used for discovery metabolomics.
PMID: 28787119 [PubMed - as supplied by publisher]
The steroid metabolome in women with premenstrual dysphoric disorder during GnRH agonist-induced ovarian suppression: effects of estradiol and progesterone addback.
The steroid metabolome in women with premenstrual dysphoric disorder during GnRH agonist-induced ovarian suppression: effects of estradiol and progesterone addback.
Transl Psychiatry. 2017 Aug 08;7(8):e1193
Authors: Nguyen TV, Reuter JM, Gaikwad NW, Rotroff DM, Kucera HR, Motsinger-Reif A, Smith CP, Nieman LK, Rubinow DR, Kaddurah-Daouk R, Schmidt PJ
Abstract
Clinical evidence suggests that symptoms in premenstrual dysphoric disorder (PMDD) reflect abnormal responsivity to ovarian steroids. This differential steroid sensitivity could be underpinned by abnormal processing of the steroid signal. We used a pharmacometabolomics approach in women with prospectively confirmed PMDD (n=15) and controls without menstrual cycle-related affective symptoms (n=15). All were medication-free with normal menstrual cycle lengths. Notably, women with PMDD were required to show hormone sensitivity in an ovarian suppression protocol. Ovarian suppression was induced for 6 months with gonadotropin-releasing hormone (GnRH)-agonist (Lupron); after 3 months all were randomized to 4 weeks of estradiol (E2) or progesterone (P4). After a 2-week washout, a crossover was performed. Liquid chromatography/tandem mass spectrometry measured 49 steroid metabolites in serum. Values were excluded if >40% were below the limit of detectability (n=21). Analyses were performed with Wilcoxon rank-sum tests using false-discovery rate (q<0.2) for multiple comparisons. PMDD and controls had similar basal levels of metabolites during Lupron and P4-derived neurosteroids during Lupron or E2/P4 conditions. Both groups had significant increases in several steroid metabolites compared with the Lupron alone condition after treatment with E2 (that is, estrone-SO4 (q=0.039 and q=0.002, respectively) and estradiol-3-SO4 (q=0.166 and q=0.001, respectively)) and after treatment with P4 (that is, allopregnanolone (q=0.001 for both PMDD and controls), pregnanediol (q=0.077 and q=0.030, respectively) and cortexone (q=0.118 and q=0.157, respectively). Only sulfated steroid metabolites showed significant diagnosis-related differences. During Lupron plus E2 treatment, women with PMDD had a significantly attenuated increase in E2-3-sulfate (q=0.035) compared with control women, and during Lupron plus P4 treatment a decrease in DHEA-sulfate (q=0.07) compared with an increase in controls. Significant effects of E2 addback compared with Lupron were observed in women with PMDD who had significant decreases in DHEA-sulfate (q=0.065) and pregnenolone sulfate (q=0.076), whereas controls had nonsignificant increases (however, these differences did not meet statistical significance for a between diagnosis effect). Alterations of sulfotransferase activity could contribute to the differential steroid sensitivity in PMDD. Importantly, no differences in the formation of P4-derived neurosteroids were observed in this otherwise highly selected sample of women studied under controlled hormone exposures.
PMID: 28786978 [PubMed - in process]
Exercise-Induced Alterations in Skeletal Muscle, Heart, Liver, and Serum Metabolome Identified by Non-Targeted Metabolomics Analysis.
Exercise-Induced Alterations in Skeletal Muscle, Heart, Liver, and Serum Metabolome Identified by Non-Targeted Metabolomics Analysis.
Metabolites. 2017 Aug 08;7(3):
Authors: Starnes JW, Parry TL, O'Neal SK, Bain JR, Muehlbauer MJ, Honcoop A, Ilaiwy A, Christopher PM, Patterson C, Willis MS
Abstract
BACKGROUND: The metabolic and physiologic responses to exercise are increasingly interesting, given that regular physical activity enhances antioxidant capacity, improves cardiac function, and protects against type 2 diabetes. The metabolic interactions between tissues and the heart illustrate a critical cross-talk we know little about.
METHODS: To better understand the metabolic changes induced by exercise, we investigated skeletal muscle (plantaris, soleus), liver, serum, and heart from exercise trained (or sedentary control) animals in an established rat model of exercise-induced aerobic training via non-targeted GC-MS metabolomics.
RESULTS: Exercise-induced alterations in metabolites varied across tissues, with the soleus and serum affected the least. The alterations in the plantaris muscle and liver were most alike, with two metabolites increased in each (citric acid/isocitric acid and linoleic acid). Exercise training additionally altered nine other metabolites in the plantaris (C13 hydrocarbon, inosine/adenosine, fructose-6-phosphate, glucose-6-phosphate, 2-aminoadipic acid, heptadecanoic acid, stearic acid, alpha-tocopherol, and oleic acid). In the serum, we identified significantly decreased alpha-tocopherol levels, paralleling the increases identified in plantaris muscle. Eleven unique metabolites were increased in the heart, which were not affected in the other compartments (malic acid, serine, aspartic acid, myoinositol, glutamine, gluconic acid-6-phosphate, glutamic acid, pyrophosphate, campesterol, phosphoric acid, creatinine). These findings complement prior studies using targeted metabolomics approaches to determine the metabolic changes in exercise-trained human skeletal muscle. Specifically, exercise trained vastus lateralus biopsies had significantly increased linoleic acid, oleic acid, and stearic acid compared to the inactive groups, which were significantly increased in plantaris muscle in the present study.
CONCLUSIONS: While increases in alpha-tocopherol have not been identified in muscle after exercise to our knowledge, the benefits of vitamin E (alpha-tocopherol) supplementation in attenuating exercise-induced muscle damage has been studied extensively. Skeletal muscle, liver, and the heart have primarily different metabolic changes, with few similar alterations and rare complementary alterations (alpha-tocopherol), which may illustrate the complexity of understanding exercise at the organismal level.
PMID: 28786928 [PubMed]
Evaluation of metabolism of azo dyes and their effects on Staphylococcus aureus metabolome.
Related Articles
Evaluation of metabolism of azo dyes and their effects on Staphylococcus aureus metabolome.
J Ind Microbiol Biotechnol. 2017 Aug 07;:
Authors: Sun J, Jin J, Beger RD, Cerniglia CE, Chen H
Abstract
Dyes containing one or more azo linkages are widely applied in cosmetics, tattooing, food and drinks, pharmaceuticals, printing inks, plastics, leather, as well as paper industries. Previously we reported that bacteria living on human skin have the ability to reduce some azo dyes to aromatic amines, which raises potential safety concerns regarding human dermal exposure to azo dyes such as those in tattoo ink and cosmetic colorant formulations. To comprehensively investigate azo dye-induced toxicity by skin bacteria activation, it is very critical to understand the mechanism of metabolism of the azo dyes at the systems biology level. In this study, an LC/MS-based metabolomics approach was employed to globally investigate metabolism of azo dyes by Staphylococcus aureus as well as their effects on the metabolome of the bacterium. Growth of S. aureus in the presence of Sudan III or Orange II was not affected during the incubation period. Metabolomics results showed that Sudan III was metabolized to 4-(phenyldiazenyl) aniline (48%), 1-[(4-aminophenyl) diazenyl]-2-naphthol (4%) and eicosenoic acid Sudan III (0.9%). These findings indicated that the azo bond close to naphthalene group of Sudan III was preferentially cleaved compared with the other azo bond. The metabolite from Orange II was identified as 4-aminobenzene sulfonic acid (35%). A much higher amount of Orange II (~90×) was detected in the cell pellets from the active viable cells compared with those from boiled cells incubated with the same concentration of Orange II. This finding suggests that Orange II was primarily transported into the S. aureus cells for metabolism, instead of the theory that the azo dye metabolism occurs extracellularly. In addition, the metabolomics results showed that Sudan III affected energy pathways of the S. aureus cells, while Orange II had less noticeable effects on the cells. In summary, this study provided novel information regarding azo dye metabolism by the skin bacterium, the effects of azo dyes on the bacterial cells and the important role on the toxicity and/or inactivation of these compounds due to microbial metabolism.
PMID: 28786013 [PubMed - as supplied by publisher]
Stress-Related Mitogen-Activated Protein Kinases Stimulate the Accumulation of Small Molecules and Proteins in Arabidopsis thaliana Root Exudates.
Related Articles
Stress-Related Mitogen-Activated Protein Kinases Stimulate the Accumulation of Small Molecules and Proteins in Arabidopsis thaliana Root Exudates.
Front Plant Sci. 2017;8:1292
Authors: Strehmel N, Hoehenwarter W, Mönchgesang S, Majovsky P, Krüger S, Scheel D, Lee J
Abstract
A delicate balance in cellular signaling is required for plants to respond to microorganisms or to changes in their environment. Mitogen-activated protein kinase (MAPK) cascades are one of the signaling modules that mediate transduction of extracellular microbial signals into appropriate cellular responses. Here, we employ a transgenic system that simulates activation of two pathogen/stress-responsive MAPKs to study release of metabolites and proteins into root exudates. The premise is based on our previous proteomics study that suggests upregulation of secretory processes in this transgenic system. An advantage of this experimental set-up is the direct focus on MAPK-regulated processes without the confounding complications of other signaling pathways activated by exposure to microbes or microbial molecules. Using non-targeted metabolomics and proteomics studies, we show that MAPK activation can indeed drive the appearance of dipeptides, defense-related metabolites and proteins in root apoplastic fluid. However, the relative levels of other compounds in the exudates were decreased. This points to a bidirectional control of metabolite and protein release into the apoplast. The putative roles for some of the identified apoplastic metabolites and proteins are discussed with respect to possible antimicrobial/defense or allelopathic properties. Overall, our findings demonstrate that sustained activation of MAPKs alters the composition of apoplastic root metabolites and proteins, presumably to influence the plant-microbe interactions in the rhizosphere. The reported metabolomics and proteomics data are available via Metabolights (Identifier: MTBLS441) and ProteomeXchange (Identifier: PXD006328), respectively.
PMID: 28785276 [PubMed]
Critical roles of mTORC1 signaling and metabolic reprogramming for M-CSF-mediated myelopoiesis.
Related Articles
Critical roles of mTORC1 signaling and metabolic reprogramming for M-CSF-mediated myelopoiesis.
J Exp Med. 2017 Aug 07;:
Authors: Karmaus PWF, Herrada AA, Guy C, Neale G, Dhungana Y, Long L, Vogel P, Avila J, Clish CB, Chi H
Abstract
Myelopoiesis is necessary for the generation of mature myeloid cells during homeostatic turnover and immunological insults; however, the metabolic requirements for this process remain poorly defined. Here, we demonstrate that myelopoiesis, including monocyte and macrophage differentiation, requires mechanistic target of rapamycin complex 1 (mTORC1) signaling and anabolic metabolism. Loss of mTORC1 impaired myelopoiesis under steady state and dampened innate immune responses against Listeria monocytogenes infection. Stimulation of hematopoietic progenitors with macrophage colony-stimulating factor (M-CSF) resulted in mTORC1-dependent anabolic metabolism, which in turn promoted expression of M-CSF receptor and transcription factors PU.1 and IRF8, thereby constituting a feed-forward loop for myelopoiesis. Mechanistically, mTORC1 engaged glucose metabolism and initiated a transcriptional program involving Myc activation and sterol biosynthesis after M-CSF stimulation. Perturbation of glucose metabolism or disruption of Myc function or sterol biosynthesis impaired myeloid differentiation. Integrative metabolomic and genomic profiling further identified one-carbon metabolism as a central node in mTORC1-dependent myelopoiesis. Therefore, the interplay between mTORC1 signaling and metabolic reprogramming underlies M-CSF-induced myelopoiesis.
PMID: 28784627 [PubMed - as supplied by publisher]
Mate extract as feed additive for improvement of beef quality.
Related Articles
Mate extract as feed additive for improvement of beef quality.
Food Res Int. 2017 Sep;99(Pt 1):336-347
Authors: de Zawadzki A, Arrivetti LOR, Vidal MP, Catai JR, Nassu RT, Tullio RR, Berndt A, Oliveira CR, Ferreira AG, Neves-Junior LF, Colnago LA, Skibsted LH, Cardoso DR
Abstract
Mate (Ilex paraguariensis A.St.-Hil.) is generally recognized as safe (GRAS status) and has a high content of alkaloids, saponins, and phenolic acids. Addition of mate extract to broilers feed has been shown to increase the oxidative stability of chicken meat, however, its effect on beef quality from animals supplemented with mate extract has not been investigated so far. Addition of extract of mate to a standard maize/soy feed at a level of 0.5, 1.0 or 1.5% w/w to the diet of feedlot for cattle resulted in increased levels of inosine monophosphate, creatine and carnosine in the fresh meat. The content of total conjugated linoleic acid increased in the meat as mate extract concentration was increased in the feed. The tendency to radical formation in meat slurries as quantified by EPR spin-trapping decreased as increasing mate extract addition to feed, especially after storage of the meat, indicating higher oxidative stability. Mate supplementation in the diet did not affect animal performance and carcass characteristics, but meat from these animals was more tender and consequently more accepted by consumers. Mate extract is shown to be a promising additive to feedlot diets for cattle to improve the oxidative stability, nutritive value and sensory quality of beef.
PMID: 28784491 [PubMed - in process]
Metabolomic Identification of Subtypes of Nonalcoholic Steatohepatitis.
Related Articles
Metabolomic Identification of Subtypes of Nonalcoholic Steatohepatitis.
Gastroenterology. 2017 May;152(6):1449-1461.e7
Authors: Alonso C, Fernández-Ramos D, Varela-Rey M, Martínez-Arranz I, Navasa N, Van Liempd SM, Lavín Trueba JL, Mayo R, Ilisso CP, de Juan VG, Iruarrizaga-Lejarreta M, delaCruz-Villar L, Mincholé I, Robinson A, Crespo J, Martín-Duce A, Romero-Gómez M, Sann H, Platon J, Van Eyk J, Aspichueta P, Noureddin M, Falcón-Pérez JM, Anguita J, Aransay AM, Martínez-Chantar ML, Lu SC, Mato JM
Abstract
BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a consequence of defects in diverse metabolic pathways that involve hepatic accumulation of triglycerides. Features of these aberrations might determine whether NAFLD progresses to nonalcoholic steatohepatitis (NASH). We investigated whether the diverse defects observed in patients with NAFLD are caused by different NAFLD subtypes with specific serum metabolomic profiles, and whether these can distinguish patients with NASH from patients with simple steatosis.
METHODS: We collected liver and serum from methionine adenosyltransferase 1a knockout (MAT1A-KO) mice, which have chronically low levels of hepatic S-adenosylmethionine (SAMe) and spontaneously develop steatohepatitis, as well as C57Bl/6 mice (controls); the metabolomes of all samples were determined. We also analyzed serum metabolomes of 535 patients with biopsy-proven NAFLD (353 with simple steatosis and 182 with NASH) and compared them with serum metabolomes of mice. MAT1A-KO mice were also given SAMe (30 mg/kg/day for 8 weeks); liver samples were collected and analyzed histologically for steatohepatitis.
RESULTS: Livers of MAT1A-KO mice were characterized by high levels of triglycerides, diglycerides, fatty acids, ceramides, and oxidized fatty acids, as well as low levels of SAMe and downstream metabolites. There was a correlation between liver and serum metabolomes. We identified a serum metabolomic signature associated with MAT1A-KO mice that also was present in 49% of the patients; based on this signature, we identified 2 NAFLD subtypes. We identified specific panels of markers that could distinguish patients with NASH from patients with simple steatosis for each subtype of NAFLD. Administration of SAMe reduced features of steatohepatitis in MAT1A-KO mice.
CONCLUSIONS: In an analysis of serum metabolomes of patients with NAFLD and MAT1A-KO mice with steatohepatitis, we identified 2 major subtypes of NAFLD and markers that differentiate steatosis from NASH in each subtype. These might be used to monitor disease progression and identify therapeutic targets for patients.
PMID: 28132890 [PubMed - indexed for MEDLINE]
RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product "wood" and its comparison with leaf counterpart.
Related Articles
RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product "wood" and its comparison with leaf counterpart.
Phytochem Anal. 2017 May;28(3):217-229
Authors: Ammar S, Contreras MDM, Gargouri B, Segura-Carretero A, Bouaziz M
Abstract
INTRODUCTION: Olea europaea L. organs such as leaves, stems and roots have been associated with numerous in vivo and in vitro biological activities and used for traditional medicinal purposes. However, tree wood is an untapped resource with little information about their chemical composition.
OBJECTIVE: That is why, the objective of this study is to increase the knowledge about phytochemicals from 'Chemlali' olive wood by means of mass spectrometry-based analyses. Its comparison with by-products derived from leaves was also studied.
METHODOLOGY: Hydromethanol extracts from wood and leaves with stems of 'Chemlali' olive cultivar were analysed using reversed-phase (RP) high-performance liquid chromatography (HPLC) coupled to two detection systems: diode-array detection (DAD) and quadrupole time-of-flight (QTOF) mass spectrometry (MS) in negative ion mode. Tandem MS experiments were performed to establish the chemical structure of olive phytochemicals.
RESULTS: A total of 85 compounds were characterised in the studied olive parts and classified as: sugars (3), organic acids (5), one phenolic aldehyde, simple phenolic acids (6), simple phenylethanoids (5), flavonoids (14), coumarins (3), caffeoyl phenylethanoid derivatives (6), iridoids (5), secoiridoids (32), and lignans (5). To our knowledge, the major part of these metabolites was not previously reported in olive tree wood, and 10 olive chemical constituents were identified for the first time in the Oleaceae family.
CONCLUSION: The results presented here demonstrated the usefulness of the methodology proposed, based on RP-HPLC-DAD-ESI-QTOF-MS and MS/MS, to develop an exhaustive metabolic profiling and to recover new biologically active compounds in olive wood with pharmacologic and cosmetic potential. Copyright © 2017 John Wiley & Sons, Ltd.
PMID: 28067965 [PubMed - indexed for MEDLINE]
Reverse Iontophoretic Extraction of Metabolites from Living Plants and their Identification by Ion-chromatography Coupled to High Resolution Mass Spectrometry.
Related Articles
Reverse Iontophoretic Extraction of Metabolites from Living Plants and their Identification by Ion-chromatography Coupled to High Resolution Mass Spectrometry.
Phytochem Anal. 2017 May;28(3):195-201
Authors: Sánchez MIG, McCullagh J, Guy RH, Compton RG
Abstract
INTRODUCTION: The identification and characterisation of cellular metabolites has now become an important strategy to obtain insight into functional plant biology. However, the extraction of metabolites for identification and analysis is challenging and, at the present time, usually requires destruction of the plant.
OBJECTIVE: To detect different plant metabolites in living plants with no pre-treatment using the combination of iontophoresis and ion-chromatography with mass spectrometry detection.
METHODOLOGY: In this work, the simple and non-destructive method of reverse iontophoresis has been used to extract in situ multiple plant metabolites from intact Ocimum basilicum leaves. Subsequently, the analysis of these metabolites has been performed with ion chromatography coupled directly to high resolution mass spectrometric detection (IC-MS).
RESULTS: The application of reverse iontophoresis to living plant samples has avoided the need for complex pre-treatments. With this approach, no less than 24 compounds, including organic acids and sugars as well as adenosine triphosphate (ATP) were successfully detected.
CONCLUSION: The research demonstrates that it is feasible to monitor, therefore, a number of important plant metabolites using a simple, relatively fast and non-destructive approach. Copyright © 2016 John Wiley & Sons, Ltd.
PMID: 28029194 [PubMed - indexed for MEDLINE]
Cardioprotection and lifespan extension by the natural polyamine spermidine.
Related Articles
Cardioprotection and lifespan extension by the natural polyamine spermidine.
Nat Med. 2016 Dec;22(12):1428-1438
Authors: Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A, Tong M, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Magnes C, Trausinger G, Narath S, Meinitzer A, Hu Z, Kirsch A, Eller K, Carmona-Gutierrez D, Büttner S, Pietrocola F, Knittelfelder O, Schrepfer E, Rockenfeller P, Simonini C, Rahn A, Horsch M, Moreth K, Beckers J, Fuchs H, Gailus-Durner V, Neff F, Janik D, Rathkolb B, Rozman J, de Angelis MH, Moustafa T, Haemmerle G, Mayr M, Willeit P, von Frieling-Salewsky M, Pieske B, Scorrano L, Pieber T, Pechlaner R, Willeit J, Sigrist SJ, Linke WA, Mühlfeld C, Sadoshima J, Dengjel J, Kiechl S, Kroemer G, Sedej S, Madeo F
Abstract
Aging is associated with an increased risk of cardiovascular disease and death. Here we show that oral supplementation of the natural polyamine spermidine extends the lifespan of mice and exerts cardioprotective effects, reducing cardiac hypertrophy and preserving diastolic function in old mice. Spermidine feeding enhanced cardiac autophagy, mitophagy and mitochondrial respiration, and it also improved the mechano-elastical properties of cardiomyocytes in vivo, coinciding with increased titin phosphorylation and suppressed subclinical inflammation. Spermidine feeding failed to provide cardioprotection in mice that lack the autophagy-related protein Atg5 in cardiomyocytes. In Dahl salt-sensitive rats that were fed a high-salt diet, a model for hypertension-induced congestive heart failure, spermidine feeding reduced systemic blood pressure, increased titin phosphorylation and prevented cardiac hypertrophy and a decline in diastolic function, thus delaying the progression to heart failure. In humans, high levels of dietary spermidine, as assessed from food questionnaires, correlated with reduced blood pressure and a lower incidence of cardiovascular disease. Our results suggest a new and feasible strategy for protection against cardiovascular disease.
PMID: 27841876 [PubMed - indexed for MEDLINE]
Branched-chain and aromatic amino acids, insulin resistance and liver specific ectopic fat storage in overweight to obese subjects.
Related Articles
Branched-chain and aromatic amino acids, insulin resistance and liver specific ectopic fat storage in overweight to obese subjects.
Nutr Metab Cardiovasc Dis. 2016 Jul;26(7):637-42
Authors: Haufe S, Witt H, Engeli S, Kaminski J, Utz W, Fuhrmann JC, Rein D, Schulz-Menger J, Luft FC, Boschmann M, Jordan J
Abstract
BACKGROUND & AIMS: Amino acids may interfere with insulin action, particularly in obese individuals. We hypothesized that increased circulating branched-chain and aromatic amino acids herald insulin resistance and ectopic fat storage, particularly hepatic fat accumulation.
METHODS AND RESULTS: We measured fasting branched-chain and aromatic amino acids (tryptophan, tyrosine, and phenylalanine) by mass spectrometry in 111 overweight to obese subjects. We applied abdominal magnetic resonance imaging and spectroscopy to assess adipose tissue distribution and ectopic fat storage, respectively. Plasma branched-chain amino acids concentrations were related to insulin sensitivity and intrahepatic fat independent from adiposity, age and gender, but not to abdominal adipose tissue or intramyocellular fat.
CONCLUSIONS: In weight stable overweight and obese individuals, branched-chain amino acid concentrations are specifically associated with hepatic fat storage and insulin resistance.
PMID: 27134061 [PubMed - indexed for MEDLINE]
metabolomics; +16 new citations
16 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2017/08/08PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
Elucidating the Structure of N(1)-Acetylisoputreanine: A Novel Polyamine Catabolite in Human Urine.
Related Articles
Elucidating the Structure of N(1)-Acetylisoputreanine: A Novel Polyamine Catabolite in Human Urine.
ACS Omega. 2017 Jul 31;2(7):3921-3930
Authors: Fitzgerald BL, Mahapatra S, Farmer DK, McNeil MR, Casero RA, Belisle JT
Abstract
An untargeted metabolomics approach was utilized to determine urinary metabolites that could serve as small-molecule biomarkers for treatment response to standard tuberculosis treatment. However, the majority of metabolites that most accurately distinguished patient samples at the time of diagnosis from those at 1 month after the start of therapy lacked structural identification. The detection of unknown metabolite structures is a well-known limitation of untargeted metabolomics and underscores a need for continued elucidation of novel metabolite structures. In this study, we sought to define the structure of a urine metabolite with an experimentally determined mass of 202.1326 Da, classified as molecular feature (MF) 202.1326. A hypothesized structure of N(1)-acetylisoputreanine was developed for MF 202.1326 using in silico tools and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In the absence of a commercial standard, synthetic N(1)-acetylisoputreanine was generated using enzymatic and chemical syntheses, and LC-MS/MS was used to confirm the structure of MF 202.1326 as N(1)-acetylisoputreanine, a proposed terminal polyamine catabolite that had not been previously detected in biological samples. Further analysis demonstrated that N(1)-acetylisoputreanine and an alternative form of this metabolite, N(1)-acetylisoputreanine-γ-lactam, are both present in human urine and are likely end-products of polyamine metabolism.
PMID: 28782053 [PubMed]
New frontiers in metabolomics: from measurement to insight.
Related Articles
New frontiers in metabolomics: from measurement to insight.
F1000Res. 2017;6:1148
Authors: Riekeberg E, Powers R
Abstract
Metabolomics is the newest addition to the "omics" disciplines and has shown rapid growth in its application to human health research because of fundamental advancements in measurement and analysis techniques. Metabolomics has unique and proven advantages in systems biology and biomarker discovery. The next generation of analysis techniques promises even richer and more complete analysis capabilities that will enable earlier clinical diagnosis, drug refinement, and personalized medicine. A review of current advancements in methodologies and statistical analysis that are enhancing and improving the performance of metabolomics is presented along with highlights of some recent successful applications.
PMID: 28781759 [PubMed]