PubMed
Identification of Efficacy-Associated Markers to Discriminate <em>Flos Chrysanthemum</em> and <em>Flos Chrysanthemi Indici</em> Based on Fingerprint-Activity Relationship Modeling: A Combined Evaluation over Chemical Consistence and Quality Consistence
Molecules. 2023 Aug 25;28(17):6254. doi: 10.3390/molecules28176254.ABSTRACTMonitoring the quality consistency of traditional Chinese medicines, or herbal medicines (HMs), is the basis of assuring the efficacy and safety of HMs during clinical applications. The purpose of this work was to characterize the difference in hydrophilic antioxidants and related bioactivities between Flos Chrysanthemum (JH) and its wild relatives (Chrysanthemum indicum L.; YJH) based on the establishment of fingerprint-efficacy relationship modeling. The concentrations of the total phenolics and flavonoids of JH samples were shown to be generally higher than those of YJH, but the concentration distribution ranges of YJH were significantly greater compared to JH samples, possibly related to environmental stress factors leading to the concentration fluctuations of phytochemicals during the growth and flowering of Chrysanthemum cultivars. Correspondingly, the total antioxidant capabilities of JH were greatly higher than those of YJH samples, as revealed by chemical assays, including DPPH and ABTS radical scavenging activities and FRAP assays. In addition, cellular-based antioxidant activities confirmed the results of chemical assays, suggesting that the differences in antioxidant activities among the different types of Chrysanthemums were obvious. The extracts from YJH and JH samples showed significant α-glucosidase inhibitory activity and lipase-inhibitory activity, implying the modulatory effects on lipid and glucose metabolisms, which were also confirmed by an untargeted cell-based metabolomics approach. The selected common peaks by similarity analysis contributed to the discrimination of YJH and JH samples, and the modeling of the fingerprint-bioactivity relationship identified neochlorogenic acid, isochlorogenic acid A, and linarin as efficacy-associated chemical markers. These results have demonstrated that integrating HPLC fingerprints and the analysis of similarity indexes coupled with antioxidant activities and enzyme-inhibitory activities provides a rapid and effective approach to monitoring the quality consistency of YJH/JH samples.PMID:37687083 | DOI:10.3390/molecules28176254
<em>Hericium coralloides</em> Ameliorates Alzheimer's Disease Pathologies and Cognitive Disorders by Activating Nrf2 Signaling and Regulating Gut Microbiota
Nutrients. 2023 Aug 30;15(17):3799. doi: 10.3390/nu15173799.ABSTRACTAlzheimer's disease (AD) is prone to onset and progression under oxidative stress conditions. Hericium coralloides (HC) is an edible medicinal fungus that contains various nutrients and possesses antioxidant properties. In the present study, the nutritional composition and neuroprotective effects of HC on APP/PS1 mice were examined. Behavioral experiments showed that HC improved cognitive dysfunction in APP/PS1 mice. Immunohistochemical and Western blotting results showed that HC reduced the levels of p-tau and amyloid-β deposition in the brain. By altering the composition of the gut microbiota, HC promoted the growth of short-chain fatty acid-producing bacteria and suppressed the growth of Helicobacter. Metabolomic results showed that HC decreased D-glutamic acid and oxidized glutathione levels. In addition, HC reduced the levels of reactive oxygen species, enhanced the secretion of superoxide dismutase, catalase, and glutathione peroxidase, inhibited the production of malondialdehyde and 4-hydroxynonenal, and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Collectively, HC demonstrated antioxidant activity by activating Nrf2 signaling and regulating gut microbiota, further exerting neuroprotective effects. This study confirms that HC has the potential to be a clinically effective AD therapeutic agent and offers a theoretical justification for both the development and use of this fungus.PMID:37686830 | DOI:10.3390/nu15173799
Untargeted Metabolomic Analysis of Lactation-Stage-Matched Human and Bovine Milk Samples at 2 Weeks Postnatal
Nutrients. 2023 Aug 29;15(17):3768. doi: 10.3390/nu15173768.ABSTRACTEpidemiological data demonstrate that bovine whole milk is often substituted for human milk during the first 12 months of life and may be associated with adverse infant outcomes. The objective of this study is to interrogate the human and bovine milk metabolome at 2 weeks of life to identify unique metabolites that may impact infant health outcomes. Human milk (n = 10) was collected at 2 weeks postpartum from normal-weight mothers (pre-pregnant BMI < 25 kg/m2) that vaginally delivered term infants and were exclusively breastfeeding their infant for at least 2 months. Similarly, bovine milk (n = 10) was collected 2 weeks postpartum from normal-weight primiparous Holstein dairy cows. Untargeted data were acquired on all milk samples using high-resolution liquid chromatography-high-resolution tandem mass spectrometry (HR LC-MS/MS). MS data pre-processing from feature calling to metabolite annotation was performed using MS-DIAL and MS-FLO. Our results revealed that more than 80% of the milk metabolome is shared between human and bovine milk samples during early lactation. Unbiased analysis of identified metabolites revealed that nearly 80% of milk metabolites may contribute to microbial metabolism and microbe-host interactions. Collectively, these results highlight untargeted metabolomics as a potential strategy to identify unique and shared metabolites in bovine and human milk that may relate to and impact infant health outcomes.PMID:37686800 | DOI:10.3390/nu15173768
Effects of a Very-Low-Calorie Ketogenic Diet on the Fecal and Urinary Volatilome in an Obese Patient Cohort: A Preliminary Investigation
Nutrients. 2023 Aug 28;15(17):3752. doi: 10.3390/nu15173752.ABSTRACTSeveral recent studies deepened the strong connection between gut microbiota and obesity. The effectiveness of the very-low-calorie ketogenic diet (VLCKD) has been measured in terms of positive impact on the host homeostasis, but little is known of the modification exerted on the intestinal metabolome. To inspect this complex relationship, we analyzed both fecal and urinary metabolome in terms of volatile organic compounds (VOCs) by the GC-MS method in 25 obese patients that were under VLCKD for eight weeks. Partial least square discriminant analysis evidenced specific urinary and fecal metabolites whose profile can be considered a signature of a partial restore toward the host eubiosis. Specifically, among various keystone VOCs, the decreased concentration of four statistically significant fecal esters (i.e., propanoic acid pentyl ester, butanoic acid hexyl ester, butanoic acid pentyl ester, and pentanoic acid butyl ester) supports the positive effect of VLCKD treatment. Our pilot study results suggest a potential positive effect of VLCKD intervention affecting fecal and urinary volatilome profiles from obese patients. Meta-omics techniques including the study of genes and transcripts will help in developing new interventions useful in preventing or treating obesity and its associated health problems.PMID:37686784 | DOI:10.3390/nu15173752
Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults
Nutrients. 2023 Aug 23;15(17):3687. doi: 10.3390/nu15173687.ABSTRACTThis feeding trial evaluated the impact of the Dietary Approaches to Stop Hypertension diet on changes in plasma choline, choline metabolites, and ceramides in obese older adults; 28 adults consumed 3oz (n = 15) or 6oz (n = 13) of beef within a standardized DASH diet for 12 weeks. Plasma choline, betaine, methionine, dimethylglycine (DMG), phosphatidylcholine (PC), lysophosphotidylcholine (LPC), sphingomyelin, trimethylamine-N-oxide (TMAO), L-carnitine, ceramide, and triglycerides were measured in fasted blood samples. Plasma LPC, sphingomyelin, and ceramide species were also quantified. In response to the study diet, with beef intake groups combined, plasma choline decreased by 9.6% (p = 0.012); DMG decreased by 10% (p = 0.042); PC decreased by 51% (p < 0.001); total LPC increased by 281% (p < 0.001); TMAO increased by 26.5% (p < 0.001); total ceramide decreased by 22.1% (p < 0.001); and triglycerides decreased by 18% (p = 0.021). All 20 LPC species measured increased (p < 0.01) with LPC 16:0 having the greatest response. Sphingomyelin 16:0, 18:0, and 18:1 increased (all p < 0.001) by 10.4%, 22.5%, and 24%, respectively. In contrast, we observed that sphingomyelin 24:0 significantly decreased by 10%. Ceramide 22:0 and 24:0 decreased by 27.6% and 10.9% (p < 0.001), respectively, and ceramide 24:1 increased by 36.8% (p = 0.013). Changes in choline and choline metabolites were in association with anthropometric and cardiometabolic outcomes. These findings show the impact of the DASH diet on choline metabolism in older adults and demonstrate the influence of diet to modify circulating LPC, sphingomyelin, and ceramide species.PMID:37686719 | DOI:10.3390/nu15173687
Metabolomics of Duodenal Juice for Biliary Tract Cancer Diagnosis
Cancers (Basel). 2023 Sep 1;15(17):4370. doi: 10.3390/cancers15174370.ABSTRACTThe poor prognosis of malignant biliary diseases is partially caused by their difficult early diagnosis. Therefore, many patients are only diagnosed at advanced stages. This study aimed to improve diagnosis by clarifying the differences in the duodenal juice metabolomes of benign and malignant biliary diseases. From October 2021 to January 2023, duodenal juice was obtained from 67 patients with suspected biliary diseases who required endoscopic ultrasonography and endoscopic retrograde cholangiography for diagnosis/treatment. The samples metabolomes were analyzed via nuclear magnet resonance spectroscopy using an 800-MHz spectrometer. Metabolomes of malignant and benign diseases were then compared, and multivariate analysis was performed to determine the relevant factors for malignancy/benignancy. For benignancy, no significant predictors were observed. For malignancy, acetone was a significant predictor, with higher concentrations in the malignant group than in the benign group. Regarding the receiver operating characteristic curve analysis for biliary tract carcinoma diagnosis, the predictive value of acetone in duodenal juice was comparable with serum CA19-9 levels (area under the curve: 0.7330 vs. 0.691, p = 0.697). In conclusion, duodenal juice metabolomics is a feasible method that is available for differential diagnosis in the biliary disease field.PMID:37686644 | DOI:10.3390/cancers15174370
Metabolic Reprogramming by Ribitol Expands the Therapeutic Window of BETi JQ1 against Breast Cancer
Cancers (Basel). 2023 Sep 1;15(17):4356. doi: 10.3390/cancers15174356.ABSTRACTMany cancer patients still lack effective treatments, and pre-existing or acquired resistance limits the clinical benefit of even the most advanced medicines. Recently, much attention has been given to the role of metabolism in cancer, expanding from the Warburg effect to highlight unique patterns that, in turn, may improve diagnostic and therapeutic approaches. Our recent metabolomics study revealed that ribitol can alter glycolysis in breast cancer cells. In the current study, we investigate the combinatorial effects of ribitol with several other anticancer drugs (chrysin, lonidamine, GSK2837808A, CB-839, JQ1, and shikonin) in various breast cancer cells (MDA-MB-231, MCF-7, and T-47D). The combination of ribitol with JQ1 synergistically inhibited the proliferation and migration of breast cancer cells cell-type dependently, only observed in the triple-negative MDA-MB-231 breast cancer cells. This synergy is associated with the differential effects of the 2 compounds on expression of the genes involved in cell survival and death, specifically downregulation in c-Myc and other anti-apoptotic proteins (Bcl-2, Bcl-xL, Mcl-1), but upregulation in p53 and cytochrome C levels. Glycolysis is differentially altered, with significant downregulation of glucose-6-phosphate and lactate by ribitol and JQ1, respectively. The overall effect of the combined treatment on metabolism and apoptosis-related genes results in significant synergy in the inhibition of cell growth and induction of apoptosis. Given the fact that ribitol is a metabolite with limited side effects, a combined therapy is highly desirable with relative ease to apply in the clinic for treating an appropriate cancer population. Our results also emphasize that, similar to traditional drug development, the therapeutic potential of targeting metabolism for cancer treatment may only be achieved in combination with other drugs and requires the identification of a specific cancer population. The desire to apply metabolomic intervention to a large scope of cancer types may be one of the reasons identification of this class of drugs in a clinical trial setting has been delayed.PMID:37686632 | DOI:10.3390/cancers15174356
Effectiveness of Treatments That Alter Metabolomics in Cancer Patients-A Systematic Review
Cancers (Basel). 2023 Aug 28;15(17):4297. doi: 10.3390/cancers15174297.ABSTRACTINTRODUCTION: Cancer is the leading cause of death worldwide, with the most frequent being breast cancer in women, prostate cancer in men and colon cancer in both sexes. The use of metabolomics to find new biomarkers can provide knowledge about possible interventions based on the presence of oncometabolites in different cancer types.OBJECTIVES: The primary purpose of this review is to analyze the characteristic metabolome of three of the most frequent cancer types. We further want to identify the existence and success rate of metabolomics-based intervention in patients suffering from those cancer types. Our conclusions are based on the analysis of the methodological quality of the studies.METHODS: We searched for studies that investigated the metabolomic characteristics in patients suffering from breast cancer, prostate cancer or colon cancer in clinical trials. The data were analyzed, as well as the effects of specific interventions based on identified metabolomics and one or more oncometabolites. The used databases were PubMed, Virtual Health Library, Web of Science, EBSCO and Cochrane Library. Only nine studies met the selection criteria. Study bias was analyzed using the Cochrane risk of bias tool. This systematic review protocol was registered at the International Prospective Register of Systematic Reviews (PROSPERO: CRD42023401474).RESULTS: Only nine studies about clinical trials were included in this review and show a moderate quality of evidence. Metabolomics-based interventions related with disease outcome were conflictive with no or small changes in the metabolic characteristics of the different cancer types.CONCLUSIONS: This systematic review shows some interesting results related with metabolomics-based interventions and their effects on changes in certain cancer oncometabolites. The small number of studies we identified which fulfilled our inclusion criteria in this systematic review does not allow us to draw definitive conclusions. Nevertheless, some results can be considered as promising although further research is needed. That research must focus not only on the presence of possible oncometabolites but also on possible metabolomics-based interventions and their influence on the outcome in patients suffering from breast cancer, prostate cancer or colon cancer.PMID:37686573 | DOI:10.3390/cancers15174297
Molecular Regulatory Network of Anthocyanin Accumulation in Black Radish Skin as Revealed by Transcriptome and Metabonome Analysis
Int J Mol Sci. 2023 Sep 4;24(17):13663. doi: 10.3390/ijms241713663.ABSTRACTTo understand the coloring mechanism in black radish, the integrated metabolome and transcriptome analyses of root skin from a black recombinant inbred line (RIL 1901) and a white RIL (RIL 1911) were carried out. A total of 172 flavonoids were detected, and the analysis results revealed that there were 12 flavonoid metabolites in radish root skin, including flavonols, flavones, and anthocyanins. The relative concentrations of most flavonoids in RIL 1901 were higher than those in RIL 1911. Meanwhile, the radish root skin also contained 16 types of anthocyanins, 12 of which were cyanidin and its derivatives, and the concentration of cyanidin 3-o-glucoside was very high at different development stages of black radish. Therefore, the accumulation of cyanidin and its derivatives resulted in the black root skin of radish. In addition, a module positively related to anthocyanin accumulation and candidate genes that regulate anthocyanin synthesis was identified by the weighted gene co-expression network analysis (WGCNA). Among them, structural genes (RsCHS, RsCHI, RsDFR, and RsUGT75C1) and transcription factors (TFs) (RsTT8, RsWRKY44L, RsMYB114, and RsMYB308L) may be crucial for the anthocyanin synthesis in the root skin of black radish. The anthocyanin biosynthesis pathway in the root skin of black radish was constructed based on the expression of genes related to flavonoid and anthocyanin biosynthesis pathways (Ko00941 and Ko00942) and the relative expressions of metabolites. In conclusion, this study not only casts new light on the synthesis and accumulation of anthocyanins in the root skin of black radish but also provides a molecular basis for accelerating the cultivation of new black radish varieties.PMID:37686469 | DOI:10.3390/ijms241713663
Metabolomic Analysis of Pediatric Patients with Idiosyncratic Drug-Induced Liver Injury According to the Updated RUCAM
Int J Mol Sci. 2023 Sep 1;24(17):13562. doi: 10.3390/ijms241713562.ABSTRACTHepatotoxicity, a common adverse drug effect, has been extensively studied in adult patients. However, it is equally important to investigate this condition in pediatric patients to develop personalized treatment strategies for children. This study aimed to identify plasma biomarkers that characterize hepatotoxicity in pediatric patients through an observational case-control study. Metabolomic analysis was conducted on 55 pediatric patients with xenobiotic liver toxicity and 88 healthy controls. The results revealed clear differences between the two groups. Several metabolites, including hydroxydecanoylcarnitine, octanoylcarnitine, lysophosphatidylcholine, glycocholic acid, and taurocholic acid, were identified as potential biomarkers (area under the curve: 0.817; 95% confidence interval: 0.696-0.913). Pathway analysis indicated involvement of primary bile acid biosynthesis and the metabolism of taurine and hypotaurine (p < 0.05). The findings from untargeted metabolomic analysis demonstrated an increase in bile acids in children with hepatotoxicity. The accumulation of cytotoxic bile acids should be further investigated to elucidate the role of these metabolites in drug-induced liver injury.PMID:37686369 | DOI:10.3390/ijms241713562
Integrated Metabolome and Transcriptome Analyses Reveal Amino Acid Biosynthesis Mechanisms during the Physiological Maturity of Grains in Yunnan Hulled Wheat (<em>Triticum aestivum</em> ssp. <em>yunnanense</em> King)
Int J Mol Sci. 2023 Aug 30;24(17):13475. doi: 10.3390/ijms241713475.ABSTRACTYunnan hulled wheat (YHW) possesses excellent nutritional characteristics; however, the precise amino acid (AA) composition, contents, and molecular mechanisms underlying AA biosynthesis in YHW grains remain unclear. In this study, we aimed to perform metabolomic and transcriptomic profiling to identify the composition and genetic factors regulating AA biosynthesis during the physiological maturation of grains of two YHW genotypes, Yunmai and Dikemail, with high and low grain protein contents, respectively. A total of 40 and 14 differentially accumulated amino acids (AAs) or AA derivatives were identified between the waxy grain (WG) and mature grain (MG) phenological stages of Yunmai and Dikemail, respectively. The AA composition differed between WG and MG, and the abundance of AAs-especially that of essential AAs-was significantly higher in WG than in MG (only 38.74-58.26% of WG). Transcriptome analysis revealed differential regulation of structural genes associated with the relatively higher accumulation of AAs in WG. Weighted gene co-expression network analysis and correlation analyses of WG and MG indicated differences in the expression of clusters of genes encoding both upstream elements of AA biosynthesis and enzymes that are directly involved in AA synthesis. The expression of these genes directly impacted the synthesis of various AAs. Together, these results contribute to our understanding of the mechanism of AA biosynthesis during the different developmental stages of grains and provide a foundation for further research to improve the nutritional value of wheat products.PMID:37686281 | DOI:10.3390/ijms241713475
The Role of Biomarkers, Metabolomics, and COVID-19 in Venous Thromboembolism-A Review of Literature
Int J Mol Sci. 2023 Aug 29;24(17):13411. doi: 10.3390/ijms241713411.ABSTRACTIn recent years, the field of venous thromboembolism has undergone numerous innovations, starting from the recent discoveries on the role of biomarkers, passing through the role of metabolomics in expanding our knowledge on pathogenic mechanisms, which have opened up new therapeutic targets. A variety of studies have contributed to characterizing the metabolic phenotype that occurs in venous thromboembolism, identifying numerous pathways that are altered in this setting. Among these pathways are the metabolism of carnitine, tryptophan, purine, and fatty acids. Furthermore, new evidence has emerged with the recent COVID-19 pandemic. Hypercoagulability phenomena induced by this viral infection appear to be related to altered von Willebrand factor activity, alteration of the renin-angiotensin-aldosterone system, and dysregulation of both innate and adaptive immunity. This is the first literature review that brings together the most recent evidence regarding biomarkers, metabolomics, and COVID-19 in the field of venous thromboembolism, while also mentioning current therapeutic protocols.PMID:37686216 | DOI:10.3390/ijms241713411
Metabolomics: Perspectives on Clinical Employment in Autism Spectrum Disorder
Int J Mol Sci. 2023 Aug 29;24(17):13404. doi: 10.3390/ijms241713404.ABSTRACTPrecision medicine is imminent, and metabolomics is one of the main actors on stage. We summarize and discuss the current literature on the clinical application of metabolomic techniques as a possible tool to improve early diagnosis of autism spectrum disorder (ASD), to define clinical phenotypes and to identify co-occurring medical conditions. A review of the current literature was carried out after PubMed, Medline and Google Scholar were consulted. A total of 37 articles published in the period 2010-2022 was included. Selected studies involve as a whole 2079 individuals diagnosed with ASD (1625 males, 394 females; mean age of 10, 9 years), 51 with other psychiatric comorbidities (developmental delays), 182 at-risk individuals (siblings, those with genetic conditions) and 1530 healthy controls (TD). Metabolomics, reflecting the interplay between genetics and environment, represents an innovative and promising technique to approach ASD. The metabotype may mirror the clinical heterogeneity of an autistic condition; several metabolites can be expressions of dysregulated metabolic pathways thus liable of leading to clinical profiles. However, the employment of metabolomic analyses in clinical practice is far from being introduced, which means there is a need for further studies for the full transition of metabolomics from clinical research to clinical diagnostic routine.PMID:37686207 | DOI:10.3390/ijms241713404
Unravelling the Link between Psychological Distress and Liver Disease: Insights from an Anxiety-like Rat Model and Metabolomics Analysis
Int J Mol Sci. 2023 Aug 29;24(17):13356. doi: 10.3390/ijms241713356.ABSTRACTPsychological distress is associated with an increase in liver disease mortality. This association highlights the close relationship between psychological and physical health. The underlying mechanism of this association needs to be elucidated. In this study, a rat model of anxiety was developed via compound stress. Changes in the HPA axis and inflammatory factors in the brains of the rats were evaluated for behavioral tests and liver function, respectively. The liver metabolic profiles of the rats were characterized through liquid chromatography-mass spectrometry (LC-MS). Differential metabolites were screened based on the conditions of p < 0.05 and VIP > 1. A pathway enrichment analysis was performed on the metabolomics data using the Ingenuity Pathway Analysis (IPA). Immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays were performed to examine the expression of the screened target epidermal growth factor receptor (EGFR) and to elucidate the pathway associated with the mechanism. The results showed the impairment of liver function among the rats in an anxiety-like state. Additionally, 61 differential metabolites in the control and anxiety groups were screened using metabolomics (p < 0.05, VIP > 1). The results of the IPA analysis showed that the key target was EGFR. We also found that an anxiety-like state in rats may cause liver injury through the EFGR/PI3K/AKT/NF-κB pathway, which can lead to the production of inflammatory factors in the liver. Our results revealed a mechanism by which anxiety-like behavior leads to liver damage in rats. The findings of this study provided new insights into the deleterious effects of psychological problems on physical health.PMID:37686162 | DOI:10.3390/ijms241713356
In Situ Raman Study of Neurodegenerated Human Neuroblastoma Cells Exposed to Outer-Membrane Vesicles Isolated from <em>Porphyromonas gingivalis</em>
Int J Mol Sci. 2023 Aug 28;24(17):13351. doi: 10.3390/ijms241713351.ABSTRACTThe aim of this study was to elucidate the chemistry of cellular degeneration in human neuroblastoma cells upon exposure to outer-membrane vesicles (OMVs) produced by Porphyromonas gingivalis (Pg) oral bacteria by monitoring their metabolomic evolution using in situ Raman spectroscopy. Pg-OMVs are a key factor in Alzheimer's disease (AD) pathogenesis, as they act as efficient vectors for the delivery of toxins promoting neuronal damage. However, the chemical mechanisms underlying the direct impact of Pg-OMVs on cell metabolites at the molecular scale still remain conspicuously unclear. A widely used in vitro model employing neuroblastoma SH-SY5Y cells (a sub-line of the SK-N-SH cell line) was spectroscopically analyzed in situ before and 6 h after Pg-OMV contamination. Concurrently, Raman characterizations were also performed on isolated Pg-OMVs, which included phosphorylated dihydroceramide (PDHC) lipids and lipopolysaccharide (LPS), the latter in turn being contaminated with a highly pathogenic class of cysteine proteases, a key factor in neuronal cell degradation. Raman characterizations located lipopolysaccharide fingerprints in the vesicle structure and unveiled so far unproved aspects of the chemistry behind protein degradation induced by Pg-OMV contamination of SH-SY5Y cells. The observed alterations of cells' Raman profiles were then discussed in view of key factors including the formation of amyloid β (Aβ) plaques and hyperphosphorylated Tau neurofibrillary tangles, and the formation of cholesterol agglomerates that exacerbate AD pathologies.PMID:37686157 | DOI:10.3390/ijms241713351
Metabolomic Analysis of Trehalose Alleviating Oxidative Stress in Myoblasts
Int J Mol Sci. 2023 Aug 28;24(17):13346. doi: 10.3390/ijms241713346.ABSTRACTTrehalose, a naturally occurring non-toxic disaccharide, has attracted considerable attention for its potential in alleviating oxidative stress in skeletal muscle. In this study, our aim was to elucidate the metabolic mechanisms underlying the protective effects of trehalose against hydrogen peroxide (H2O2)-induced oxidative stress in C2C12 myoblasts. Our results show that both trehalose treatment and pretreatment effectively alleviate the H2O2-induced decrease in cell viability, reduce intracellular reactive oxygen species (ROS), and attenuate lipid peroxidation. Furthermore, using NMR-based metabolomics analysis, we observed that trehalose treatment and pretreatment modulate the metabolic profile of myoblasts, specifically regulating oxidant metabolism and amino acid metabolism, contributing to their protective effects against oxidative stress. Importantly, our results reveal that trehalose treatment and pretreatment upregulate the expression levels of P62 and Nrf2 proteins, thereby activating the Nrf2-NQO1 axis and effectively reducing oxidative stress. These significant findings highlight the potential of trehalose supplementation as a promising and effective strategy for alleviating oxidative stress in skeletal muscle and provide valuable insights into its potential therapeutic applications.PMID:37686153 | DOI:10.3390/ijms241713346
Comprehensive Transcriptome and Metabolome Analyses Reveal Primary Molecular Regulation Pathways Involved in Peanut under Water and Nitrogen Co-Limitation
Int J Mol Sci. 2023 Aug 27;24(17):13308. doi: 10.3390/ijms241713308.ABSTRACTThe yield and quality of peanut (Arachis hypogaea L.), an oil crop planted worldwide, are often limited by drought stress (DS) and nitrogen (N) deficiency. To investigate the molecular mechanism by which peanut counteracts DS and N deficiency, we conducted comprehensive transcriptomic and metabolomic analyses of peanut leaves. Herein, 829 known differentially accumulated metabolites, 324 differentially expressed transcription factors, and 5294 differentially expressed genes (DEGs) were identified under different water and N conditions. The transcriptome analysis demonstrated that drought-related DEGs were predominantly expressed in "glycolysis/gluconeogenesis" and "glycerolipid metabolism", while N-deficiency-related DEGs were mainly expressed in starch and sucrose metabolism, as well as in the biosynthesis of amino acid pathways. The biosynthesis, transport, and catabolism of secondary metabolites accounted for a large proportion of the 1317 DEGs present in water and N co-limitation. Metabolomic analysis showed that the metabolic accumulation of these pathways was significantly dependent on the stress conditions. Additionally, the roles of metabolites and genes in these pathways, such as the biosynthesis of amino acids and phenylpropanoid biosynthesis under different stress conditions, were discussed. The results demonstrated that different genes, metabolic pathways, and metabolites were related to DS and N deficiency. Thus, this study elucidates the metabolic pathways and functional genes that can be used for the improvement of peanut resistance to abiotic stress.PMID:37686113 | DOI:10.3390/ijms241713308
Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach-A Comprehensive Narrative Review
Int J Mol Sci. 2023 Aug 27;24(17):13294. doi: 10.3390/ijms241713294.ABSTRACTThe comprehensive narrative review conducted in this study delves into the mechanisms of communication and action at the molecular level in the human organism. The review addresses the complex mechanism involved in the microbiota-gut-brain axis as well as the implications of alterations in the microbial composition of patients with neurodegenerative diseases. The pathophysiology of neurodegenerative diseases with neuronal loss or death is analyzed, as well as the mechanisms of action of the main metabolites involved in the bidirectional communication through the microbiota-gut-brain axis. In addition, interventions targeting gut microbiota restructuring through fecal microbiota transplantation and the use of psychobiotics-pre- and pro-biotics-are evaluated as an opportunity to reduce the symptomatology associated with neurodegeneration in these pathologies. This review provides valuable information and facilitates a better understanding of the neurobiological mechanisms to be addressed in the treatment of neurodegenerative diseases.PMID:37686104 | DOI:10.3390/ijms241713294
Multi-Omics Analysis of NCI-60 Cell Line Data Reveals Novel Metabolic Processes Linked with Resistance to Alkylating Anti-Cancer Agents
Int J Mol Sci. 2023 Aug 26;24(17):13242. doi: 10.3390/ijms241713242.ABSTRACTThis study aimed to elucidate the molecular determinants influencing the response of cancer cells to alkylating agents, a major class of chemotherapeutic drugs used in cancer treatment. The study utilized data from the National Cancer Institute (NCI)-60 cell line screening program and employed a comprehensive multi-omics approach integrating transcriptomic, proteomic, metabolomic, and SNP data. Through integrated pathway analysis, the study identified key metabolic pathways, such as cysteine and methionine metabolism, starch and sucrose metabolism, pyrimidine metabolism, and purine metabolism, that differentiate drug-sensitive and drug-resistant cancer cells. The analysis also revealed potential druggable targets within these pathways. Furthermore, copy number variant (CNV) analysis, derived from SNP data, between sensitive and resistant cells identified notable differences in genes associated with metabolic changes (WWOX, CNTN5, DDAH1, PGR), protein trafficking (ARL17B, VAT1L), and miRNAs (MIR1302-2, MIR3163, MIR1244-3, MIR1302-9). The findings of this study provide a holistic view of the molecular landscape and dysregulated pathways underlying the response of cancer cells to alkylating agents. The insights gained from this research can contribute to the development of more effective therapeutic strategies and personalized treatment approaches, ultimately improving patient outcomes in cancer treatment.PMID:37686047 | DOI:10.3390/ijms241713242
Metabolomics in Pulmonary Hypertension-A Useful Tool to Provide Insights into the Dark Side of a Tricky Pathology
Int J Mol Sci. 2023 Aug 25;24(17):13227. doi: 10.3390/ijms241713227.ABSTRACTPulmonary hypertension (PH) is a multifaceted illness causing clinical manifestations like dyspnea, fatigue, and cyanosis. If left untreated, it often evolves into irreversible pulmonary arterial hypertension (PAH), leading to death. Metabolomics is a laboratory technique capable of providing insights into the metabolic pathways that are responsible for a number of physiologic or pathologic events through the analysis of a biological fluid (such as blood, urine, and sputum) using proton nuclear magnetic resonance spectroscopy or mass spectrometry. A systematic review was finalized according to the PRISMA scheme, with the goal of providing an overview of the research papers released up to now on the application of metabolomics to PH/PAH. So, eighty-five papers were identified, of which twenty-four concerning PH, and sixty-one regarding PAH. We found that, from a metabolic standpoint, the hallmarks of the disease onset and progression are an increase in glycolysis and impaired mitochondrial respiration. Oxidation is exacerbated as well. Specific metabolic fingerprints allow the characterization of some of the specific PH and PAH subtypes. Overall, metabolomics provides insights into the biological processes happening in the body of a subject suffering from PH/PAH. The disarranged metabolic pathways underpinning the disease may be the target of new therapeutic agents. Metabolomics will allow investigators to make a step forward towards personalized medicine.PMID:37686034 | DOI:10.3390/ijms241713227