Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Effect of the Probiotic <em>Bacillus subtilis</em> DE-CA9<sup>TM</sup> on Fecal Scores, Serum Oxidative Stress Markers and Fecal and Serum Metabolome in Healthy Dogs

Wed, 27/09/2023 - 12:00
Vet Sci. 2023 Sep 11;10(9):566. doi: 10.3390/vetsci10090566.ABSTRACTBACKGROUND: There is increasing interest in the use of Bacillus species as probiotics since their spore-forming ability favors their survival in the acidic gastric environment over other probiotic species. The subsequent germination of B. subtilis to their vegetative form allows for their growth in the small intestine and may increase their beneficial effect on the host. B. subtilis strains have also previously been shown to have beneficial effects in humans and production animals, however, no reports are available so far on their use in companion animals.STUDY DESIGN: The goal of this study was therefore to investigate the daily administration of 1 × 109 cfu DE-CA9TM orally per day versus placebo on health parameters, fecal scores, fecal microbiome, fecal metabolomics, as well as serum metabolomics and oxidative stress markers in ten healthy Beagle dogs in a parallel, randomized, prospective, placebo-controlled design over a period of 45 days.RESULTS: DE-CA9TM decreased the oxidative status compared to controls for advanced oxidation protein products (AOPP), thiobarbituric acid reactive substances (TBARS) and reactive oxygen metabolites (d-ROMS), suggesting an antioxidant effect of the treatment. Fecal metabolomics revealed a significant reduction in metabolites associated with tryptophan metabolism in the DE-CA9TM-treated group. DE-CA9TM also significantly decreased phenylalanine and homocysteine and increased homoserine and threonine levels. Amino acid metabolism was also affected in the serum metabolome, with increased levels of urea and cadaverine, and reductions in N-acetylornithine in DE-CA9TM compared to controls. Similarly, changes in essential amino acids were observed, with a significant increase in tryptophan and lysine levels and a decrease in homocysteine. An increase in serum guanine and deoxyuridine was also detected, with a decrease in beta-alanine in the animals that ingested DE-CA9TM.CONCLUSIONS: Data generated throughout this study suggest that the daily administration of 1 × 109 cfu of DE-CA9TM in healthy Beagle dogs is safe and does not affect markers of general health and fecal scores. Furthermore, DE-CA9TM administration had a potential positive effect on some serum markers of oxidative stress, and protein and lipid metabolism in serum and feces.PMID:37756088 | DOI:10.3390/vetsci10090566

Antagonistic Activity of Oroxylin A against <em>Fusarium graminearum</em> and Its Inhibitory Effect on Zearalenone Production

Wed, 27/09/2023 - 12:00
Toxins (Basel). 2023 Aug 31;15(9):535. doi: 10.3390/toxins15090535.ABSTRACTFusarium graminearum produces zearalenone (ZEA), a mycotoxin that is widely found in food and feed products and is toxic to humans and livestock. Piper sarmentosum extract (PSE) inhibits F. graminearum, and Oroxylin A appears to be a major antifungal compound in PSE. The aim of this study is to quantify the Oroxylin A content in PSE using UPLC-QTOF-MS/MS, and to investigate the antagonistic activity of Oroxylin A against F. graminearum and its inhibitory effect on ZEA production. The results indicate that Oroxylin A inhibits both fungal growth and ZEA production in a dose-dependent manner. Oroxylin A treatment downregulated the mRNA expression of zearalenone biosynthesis protein 1 (ZEB1) and zearalenone biosynthesis protein 2 (ZEB2). The metabolomics analysis of F. graminearum mycelia indicated that the level of ribose 5-phosphate (R5P) deceased (p < 0.05) after Oroxylin A treatment (64-128 ng/mL). Moreover, as the Oroxylin A treatment content increased from 64 to 128 ng/mL, the levels of cis-aconitate (p < 0.05) and fumarate (p < 0.01) were upregulated successively. A correlation analysis further showed that the decreased R5P level was positively correlated with ZEB1 and ZEB2 expression, while the increased cis-aconitate and fumarate levels were negatively correlated with ZEB1 and ZEB2 expression. These findings demonstrate the potential of Oroxylin A as a natural agent to control toxigenic fungi and their mycotoxin.PMID:37755961 | DOI:10.3390/toxins15090535

Untargeted Metabolomics Approach Correlated Enniatin B Mycotoxin Presence in Cereals with Kashin-Beck Disease Endemic Regions of China

Wed, 27/09/2023 - 12:00
Toxins (Basel). 2023 Aug 30;15(9):533. doi: 10.3390/toxins15090533.ABSTRACTKashin-Beck disease (KBD) is a multifactorial endemic disease that only occurs in specific Asian areas. Mycotoxin contamination, especially from the Fusarium spp., has been considered as one of the environmental risk factors that could provoke chondrocyte and cartilage damage. This study aimed to investigate whether new mycotoxins could be identified in KBD-endemic regions as a potential KBD risk factor. This was investigated on 292 barley samples collected in Tibet during 2009-2016 and 19 wheat samples collected in Inner Mongolia in 2006, as control, from KBD-endemic and non-endemic areas. The LC-HRMS(/MS) data, obtained by a general mycotoxin extraction technic, were interpreted by both untargeted metabolomics and molecular networks, allowing us to identify a discriminating compound, enniatin B, a mycotoxin produced by some Fusarium spp. The presence of Fusarium spp. DNA was detected in KBD-endemic area barley samples. Further studies are required to investigate the role of this mycotoxin in KBD development in vivo.PMID:37755959 | DOI:10.3390/toxins15090533

Multiplatform Metabolomics to Understand the Imidacloprid-Induced Toxicity in <em>Drosophila</em>

Wed, 27/09/2023 - 12:00
Chem Res Toxicol. 2023 Sep 27. doi: 10.1021/acs.chemrestox.3c00127. Online ahead of print.ABSTRACTNeonicotinoids, the class of insecticides used for crop protection, are subjected to vigilance due to their pernicious impacts. Imidacloprid (IMD) is one of the most representative insecticides of the neonicotinoid family, which has shown unfriendly consequences for non-target species. Metabolomics, a multidisciplinary approach, is being used in toxicological research to understand the metabolic responses to toxicant exposure by utilizing modern analytical techniques. Yet, no solitary analytical technique can cover the broad metabolite spectrum, but a multi-technique metabolomics platform can aid in analyzing the majority of the metabolites. In the present study, an effort has been made to identify the differential metabolites in Drosophila after exposure to IMD at 2.5 and 25 ng/mL using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), gas chromatography-MS (GC-MS), and NMR-based untargeted metabolomics. Multivariate pattern recognition analysis helped in identifying/recognizing 19 (LC-HRMS), 7 (GC-MS), and 13 (NMR) differential metabolites mainly belonging to the category of amino acids, sugars, fatty acids, and organic acids. The pathway analysis of differential metabolites predominantly showed impact on aminoacyl-tRNA biosynthesis, amino acid metabolism, and glycerophospholipid metabolism. Among these, arginine and proline metabolism was observed to be the common metabolic pathway perturbed in Drosophila due to IMD exposure. The multiplatform metabolomics based on LC-HRMS, GC-MS, and NMR analysis with an advanced level of statistical analysis can provide insights into potential perturbations in the metabolome of IMD-exposed Drosophila.PMID:37755873 | DOI:10.1021/acs.chemrestox.3c00127

Untargeted Metabolomics Analysis Reveals Toxicity Based on the Sex and Sexual Maturity of Single Low-Dose DEHP Exposure

Wed, 27/09/2023 - 12:00
Toxics. 2023 Sep 20;11(9):794. doi: 10.3390/toxics11090794.ABSTRACTDi-(2-Ethylhexyl) phthalate (DEHP) is a prevalent environmental endocrine disruptor that affects homeostasis, reproduction, and developmental processes. The effects of DEHP have been shown to differ based on sex and sexual maturity. This study examines the metabolic profiles of mature adult rats from both sexes, aged 10 weeks, and adolescent female rats, aged 6 weeks, following a single 5 mg/kg of body weight DEHP oral administration. An untargeted metabolomic analysis was conducted on urine samples collected at multiple times to discern potential sex- and maturity-specific DEHP toxicities. Various multivariate statistical analyses were employed to identify the relevant metabolites. The findings revealed disruptions to the steroid hormone and primary bile acid biosynthesis. Notably, DEHP exposure increased hyocholic, muricholic, and ketodeoxycholic acids in male rats. Moreover, DEHP exposure was linked to heart, liver, and kidney damage, as indicated by increased plasma GOT1 levels when compared to the levels before DEHP exposure. This study provides detailed insights into the unique mechanisms triggered by DEHP exposure concerning sex and sexual maturity, emphasizing significant distinctions in lipid metabolic profiles across the different groups. This study results deepens our understanding of the health risks linked to DEHP, informing future risk assessments and policy decisions.PMID:37755804 | DOI:10.3390/toxics11090794

Aromatic secondary metabolite production from glycerol was enhanced by amino acid addition in Pichia pastoris

Wed, 27/09/2023 - 12:00
Appl Microbiol Biotechnol. 2023 Sep 27. doi: 10.1007/s00253-023-12798-5. Online ahead of print.ABSTRACTAromatic secondary metabolites are widely used in various industries, including the nutraceutical, dietary supplement, and pharmaceutical industries. Their production currently relies on plant extraction. Microbe-based processes have recently attracted attention as sustainable alternatives to plant-based processes. We previously showed that the yeast Pichia pastoris (Komagataella phaffii) is an optimal host for producing aromatic secondary metabolites. Additionally, titers of resveratrol, an aromatic secondary metabolite, increased by 156 % when glycerol was used as a carbon source instead of glucose. However, the mechanisms by which glycerol resulted in higher production has remained unclear. In this study, we aimed to elucidate how P. pastoris produces higher levels of aromatic secondary metabolites from glycerol than from glucose. Titers of p-coumarate, naringenin, and resveratrol increased by 103 %, 118 %, and 157 %, respectively, in natural complex media containing glycerol compared with that in media containing glucose. However, the titers decreased in minimal synthetic medium without amino acids, indicating that P. pastoris cells used the amino acids only when glycerol was the carbon source. Fermentation with the addition of single amino acids showed that resveratrol titers from glycerol varied depending on the amino acid supplemented. In particular, addition of aspartate or tryptophan into the medium improved resveratrol titers by 146 % and 156 %, respectively. These results suggest that P. pastoris could produce high levels of aromatic secondary metabolites from glycerol with enhanced utilization of specific amino acids. This study provides a basis for achieving high-level production of aromatic secondary metabolites by P. pastoris. KEY POINTS: • P. pastoris can produce high levels of aromatic metabolites from glycerol • P. pastoris cells use amino acids only when glycerol is the carbon source • Aromatic metabolite titers from glycerol increase with amino acids utilization.PMID:37755508 | DOI:10.1007/s00253-023-12798-5

Low-Field Benchtop NMR to Discover Early-Onset Sepsis: A Proof of Concept

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 21;13(9):1029. doi: 10.3390/metabo13091029.ABSTRACTLow-field (LF) benchtop NMR is a new family of instruments available on the market, promising for fast metabolic fingerprinting and targeted quantification of specific metabolites despite a lack of sensitivity and resolution with respect to high-field (HF) instruments. In the present study, we evaluated the possibility to use the urinary metabolic fingerprint generated using a benchtop LF NMR instrument for an early detection of sepsis in preterm newborns, considering a cohort of neonates previously investigated by untargeted metabolomics based on Mass Spectrometry (MS). The classifier obtained behaved similarly to that based on MS, even if different classes of metabolites were taken into account. Indeed, investigating the regions of interest mainly related to the development of sepsis by a HF NMR instrument, we discovered a set of relevant metabolites associated to sepsis. The set included metabolites that were not detected by MS, but that were reported as relevant in other published studies. Moreover, a strong correlation between LF and HF NMR spectra was observed. The high reproducibility of the NMR spectra, the interpretability of the fingerprint in terms of metabolites and the ease of use make LF benchtop NMR instruments promising in discovering early-onset sepsis.PMID:37755309 | DOI:10.3390/metabo13091029

Effects of Pregnancy on Plasma Sphingolipids Using a Metabolomic and Quantitative Analysis Approach

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 21;13(9):1026. doi: 10.3390/metabo13091026.ABSTRACTChanges in the maternal metabolome, and specifically the maternal lipidome, that occur during pregnancy are relatively unknown. The objective of this investigation was to evaluate the effects of pregnancy on sphingolipid levels using metabolomics analysis followed by confirmational, targeted quantitative analysis. We focused on three subclasses of sphingolipids: ceramides, sphingomyelins, and sphingosines. Forty-seven pregnant women aged 18 to 50 years old participated in this study. Blood samples were collected on two study days for metabolomics analysis. The pregnancy samples were collected between 25 and 28 weeks of gestation and the postpartum study day samples were collected ≥3 months postpartum. Each participant served as their own control. These samples were analyzed using a Ultra-performance liquid chromatography/mass spectroscopy/mass spectroscopy (UPLC/MS/MS) assay that yielded semi-quantitative peak area values that were used to compare sphingolipid levels between pregnancy and postpartum. Following this lipidomic analysis, quantitative LC/MS/MS targeted/confirmatory analysis was performed on the same study samples. In the metabolomic analysis, 43 sphingolipid metabolites were identified and their levels were assessed using relative peak area values. These profiled sphingolipids fell into three categories: ceramides, sphingomyelins, and sphingosines. Of the 43 analytes measured, 35 were significantly different during pregnancy (p < 0.05) (including seven ceramides, 26 sphingomyelins, and two sphingosines) and 32 were significantly higher during pregnancy compared to postpartum. Following metabolomics, a separate quantitative analysis was performed and yielded quantified concentration values for 23 different sphingolipids, four of which were also detected in the metabolomics study. Quantitative analysis supported the metabolomics results with 17 of the 23 analytes measured found to be significantly different during pregnancy including 11 ceramides, four sphingomyelins, and two sphingosines. Fourteen of these were significantly higher during pregnancy. Our data suggest an overall increase in plasma sphingolipid concentrations with possible implications in endothelial function, gestational diabetes mellitus (GDM), intrahepatic cholestasis of pregnancy, and fetal development. This study provides evidence for alterations in maternal sphingolipid metabolism during pregnancy.PMID:37755306 | DOI:10.3390/metabo13091026

Non-Targeted Metabolomic Analysis of <em>Arabidopsis thaliana</em> (L.) Heynh: Metabolic Adaptive Responses to Stress Caused by N Starvation

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 18;13(9):1021. doi: 10.3390/metabo13091021.ABSTRACTAs sessile organisms, plants develop the ability to respond and survive in changing environments. Such adaptive responses maximize phenotypic and metabolic fitness, allowing plants to adjust their growth and development. In this study, we analyzed the metabolic plasticity of Arabidopsis thaliana in response to nitrate deprivation by untargeted metabolomic analysis and using wild-type (WT) genotypes and the loss-of-function nia1/nia2 double mutant. Secondary metabolites were identified using seedlings grown on a hydroponic system supplemented with optimal or limiting concentrations of N (4 or 0.2 mM, respectively) and harvested at 15 and 30 days of age. Then, spectral libraries generated from shoots and roots in both ionization modes (ESI +/-) were compared. Totals of 3407 and 4521 spectral signals (m/z_rt) were obtained in the ESI+ and ESI- modes, respectively. Of these, approximately 50 and 65% were identified as differentially synthetized/accumulated. This led to the presumptive identification of 735 KEGG codes (metabolites) belonging to 79 metabolic pathways. The metabolic responses in the shoots and roots of WT genotypes at 4 mM of N favor the synthesis/accumulation of metabolites strongly related to growth. In contrast, for the nia1/nia2 double mutant (similar as the WT genotype at 0.2 mM N), metabolites identified as differentially synthetized/accumulated help cope with stress, regulating oxidative stress and preventing programmed cell death, meaning that metabolic responses under N starvation compromise growth to prioritize a defensive response.PMID:37755301 | DOI:10.3390/metabo13091021

Metabolomic Signatures Associated with Radiation-Induced Lung Injury by Correlating Lung Tissue to Plasma in a Rat Model

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 17;13(9):1020. doi: 10.3390/metabo13091020.ABSTRACTThe lung has raised significant concerns because of its radiosensitivity. Radiation-induced lung injury (RILI) has a serious impact on the quality of patients' lives and limits the effect of radiotherapy on chest tumors. In clinical practice, effective drug intervention for RILI remains to be fully elucidated. Therefore, an in-depth understanding of the biological characteristics is essential to reveal the mechanisms underlying the complex biological processes and discover novel therapeutic targets in RILI. In this study, Wistar rats received 0, 10, 20 or 35 Gy whole-thorax irradiation (WTI). Lung and plasma samples were collected within 5 days post-irradiation. Then, these samples were processed using liquid chromatography-mass spectrometry (LC-MS). A panel of potential plasma metabolic markers was selected by correlation analysis between the lung tissue and plasma metabolic features, followed by the evaluation of radiation injury levels within 5 days following whole-thorax irradiation (WTI). In addition, the multiple metabolic dysregulations primarily involved amino acids, bile acids and lipid and fatty acid β-oxidation-related metabolites, implying disturbances in the urea cycle, intestinal flora metabolism and mitochondrial dysfunction. In particular, the accumulation of long-chain acylcarnitines (ACs) was observed as early as 2 d post-WTI by dynamic plasma metabolic data analysis. Our findings indicate that plasma metabolic markers have the potential for RILI assessment. These results reveal metabolic characteristics following WTI and provide new insights into therapeutic interventions for RILI.PMID:37755300 | DOI:10.3390/metabo13091020

Comparison of Metabolites and Main Nutritional Components between Uncooked and Cooked Purple Rice

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 15;13(9):1018. doi: 10.3390/metabo13091018.ABSTRACTCooking can lead to varying degrees of nutrient loss in purple rice. For this investigation, two varieties of purple rice (YZN1 and YZ6) were chosen as the focal points to explore the metabolites associated with rice nutrition post cooking using nontargeted and targeted metabolomics techniques. The results showed that after cooking the two purple rice varieties, the contents of the flavonoids; OPC; TP; total antioxidant capacity; and K, Na, Fe, Mn, Zn, Cu, Ca, and Mg significantly decreased. Compared with YZN1U (YZN1 uncooked), the amino acid and mineral element contents in YZN1C (YZN1 cooked) decreased to varying degrees. After cooking YZ6, the contents of seven amino acids significantly decreased. Following the preparation of purple rice, the metabolites primarily engaged in the pathways of flavonoid synthesis and flavone and flavonol synthesis. Flavonoids, total antioxidant capacity, mineral elements, and amino acids showed a strong correlation with delphinidin and luteolin. The ROC analysis demonstrated that the value of the area under the curve for delphinidin and luteolin was 1 when comparing YZ6C (YZ6 cooked) and YZ6U (YZ6 uncooked), as well as YZN1C and YZN1U. Delphinidin and luteolin can be used as potential biomarkers of nutrient loss after cooking purple rice. This study holds significant implications for the balanced nutrition and healthy development of human dietary grains.PMID:37755298 | DOI:10.3390/metabo13091018

Sex Modifies the Impact of Type 2 Diabetes Mellitus on the Murine Whole Brain Metabolome

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 14;13(9):1012. doi: 10.3390/metabo13091012.ABSTRACTType 2 diabetes mellitus (T2DM) leads to the development of cardiovascular diseases, cognitive impairment, and dementia. There are sex differences in the presentation of T2DM and its associated complications. We sought to determine the impact of sex and T2DM on the brain metabolome to gain insights into the underlying mechanisms of T2DM-associated cognitive complications. Untargeted metabolomic analysis was performed, using liquid chromatography-mass spectrometry, on whole brain tissue from adult male and female db/db mice (a T2DM model) compared to wild-type (WT) C57Bl6/J mice. Regardless of sex, T2DM increased free fatty acids and decreased acylcarnitines in the brain. Sex impacted the number (103 versus 65 in males and females, respectively), and types of metabolites shifted by T2DM. Many choline-containing phospholipids were decreased by T2DM in males. Female-specific T2DM effects included changes in neuromodulatory metabolites (γ-aminobutyric acid, 2-linoleoyl glycerol, N-methylaspartic acid, and taurine). Further, there were more significantly different metabolites between sexes in the T2DM condition as compared to the WT controls (54 vs. 15 in T2DM and WT, respectively). T2DM alters the murine brain metabolome in both sex-independent and sex-dependent manners. This work extends our understanding of brain metabolic sex differences in T2DM, cognitive implications, and potential sex-specific metabolic therapeutic targets.PMID:37755291 | DOI:10.3390/metabo13091012

In Search of Complementary Extraction Methods for Comprehensive Coverage of the <em>Escherichia coli</em> Metabolome

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 14;13(9):1010. doi: 10.3390/metabo13091010.ABSTRACTEscherichia coli is an invaluable research tool for many fields of biology, in particular for the production of recombinant enzymes. However, the activity of many such recombinant enzymes cannot be determined using standard biochemical assays, as often, the relevant substrates are not known, or the products produced are not detectable. Today, the biochemical footprints of such unknown enzyme activities can be revealed via the analysis of the metabolomes of the recombinant E. coli clones in which they are expressed, using sensitive technologies such as mass spectrometry. However, before any metabolites can be identified, it is necessary to achieve as high a coverage of the potential metabolites present within E. coli as possible. We have therefore analyzed a wide range of different extraction methods against the cell free extracts of various recombinant E. coli clones. The results were analyzed to determine the minimum number of extractions that achieved high recovery and coverage of metabolites. Two methods were selected for further analysis due to their ability to produce not only high numbers of ions, but also wide mass coverage and a high degree of complementarity. One extraction method uses acetonitrile and water, in a 4:1 ratio, which is then dried down and reconstituted in the chromatography running buffer prior to injection onto the chromatography column, and the other extraction method uses a combination of methanol, water and chloroform, in a 3:1:1 ratio, which is injected directly onto the chromatography column. These two extraction methods were shown to be complementary to each other, as regards the respective metabolites extracted, and to cover a large range of metabolites.PMID:37755290 | DOI:10.3390/metabo13091010

Recent Advances and Perspectives in Relation to the Metabolomics-Based Study of Diabetic Retinopathy

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 12;13(9):1007. doi: 10.3390/metabo13091007.ABSTRACTDiabetic retinopathy (DR), a prevalent microvascular complication of diabetes, is a major cause of acquired blindness in adults. Currently, a clinical diagnosis of DR primarily relies on fundus fluorescein angiography, with a limited availability of effective biomarkers. Metabolomics, a discipline dedicated to scrutinizing the response of various metabolites within living organisms, has shown noteworthy advancements in uncovering metabolic disorders and identifying key metabolites associated with DR in recent years. Consequently, this review aims to present the latest advancements in metabolomics techniques and comprehensively discuss the principal metabolic outcomes derived from analyzing blood, vitreous humor, aqueous humor, urine, and fecal samples.PMID:37755287 | DOI:10.3390/metabo13091007

Transcriptomic and Targeted Metabolomics Analysis of Detached <em>Lycium ruthenicum</em> Leaves Reveals Mechanisms of Anthocyanin Biosynthesis Induction through Light Quality and Sucrose Treatments

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 11;13(9):1004. doi: 10.3390/metabo13091004.ABSTRACTLight quality and sucrose-induced osmotic stress are known to cause anthocyanin synthesis in detached Lycium ruthenicum leaves. To identify the mechanisms by which the kind of light quality and sucrose concentration are induced, here, we conducted transcriptome sequencing in detached L. ruthenicum leaves treated with different qualities of light and sucrose concentrations. Leaves treated with blue light or sucrose showed a significantly increased total anthocyanins content compared to those treated with white light. Delphinidin-3-O-rutinoside and delphinidin-3-O-glucoside production were differentially regulated by the BL(-S), BL(+S), and WL(+S) treatments. The structural genes CHS, CHI, F3'H, F3'5'H, ANS, and UFGT were significantly up-regulated in leaves treated with blue light or sucrose. Leaves treated with blue light additionally showed up-regulation of the light photoreceptors CRY1, PIF3, COP1, and HY5. The anthocyanin-related genes NCED1, PYR/PYL, PP2C, SnRK2, and ABI5 were significantly up-regulated in leaves treated with sucrose, promoting adaptability to sucrose osmotic stress. Co-expression and cis-regulatory analyses suggested that HY5 and ABI5 could regulate LrMYB44 and LrMYB48 through binding to the G-box element and ABRE element, respectively, inducing anthocyanin synthesis in response to blue light or sucrose treatment. Candidate genes responsive to blue light or sucrose osmotic stress in the anthocyanin biosynthesis pathway were validated through quantitative reverse transcription PCR. These findings deepen our understanding of the mechanisms by which blue light and sucrose-induced osmotic stress regulate anthocyanin synthesis, providing valuable target genes for the future improvement in anthocyanin production in L. ruthenicum.PMID:37755284 | DOI:10.3390/metabo13091004

A Basic Study of the Effects of Mulberry Leaf Administration to Healthy C57BL/6 Mice on Gut Microbiota and Metabolites

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 10;13(9):1003. doi: 10.3390/metabo13091003.ABSTRACTMulberry leaves contain α-glucosidase inhibitors, which have hypoglycemic effects and are considered functional foods. However, few reports have covered the effects of mulberry leaf components on normal gut microbiota and gut metabolites. Herein, gut microbiota analysis and NMR-based metabolomics were performed on the feces of mulberry leaf powder (MLP)-treated mice to determine the effects of long-term MLP consumption. Gut microbiota in the mouse were analyzed using 16S-rRNA gene sequencing, and no significant differences were revealed in the diversity and community structure of the gut microbiota in the C57BL/6 mice with or without MLP supplementation. Thirty-nine metabolites were identified via 1H-NMR analysis, and carbohydrates and amino acids were significantly (p < 0.01-0.05) altered upon MLP treatment. In the MLP-treated group, there was a marked increase and decrease in maltose and glucose concentrations, respectively, possibly due to the degradation inhibitory activity of oligosaccharides. After 5 weeks, all amino acid concentrations decreased. Furthermore, despite clear fluctuations in fecal saccharide concentrations, short-chain fatty acid production via intestinal bacterial metabolism was not strongly affected. This study provides the knowledge that MLP administration can alter the gut metabolites without affecting the normal gut microbiota, which is useful for considering MLP as a healthy food source.PMID:37755283 | DOI:10.3390/metabo13091003

The Metabolic Footprint of Systemic Effects in the Blood Caused by Radiotherapy and Inflammatory Conditions: A Systematic Review

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 9;13(9):1000. doi: 10.3390/metabo13091000.ABSTRACTResponse to radiotherapy (RT) includes tissue toxicity, which may involve inflammatory reactions. We aimed to compare changes in metabolic patterns induced at the systemic level by radiation and inflammation itself. Patients treated with RT due to head and neck cancer and patients with inflammation-related diseases located in the corresponding anatomical regions were selected. PubMed and Web of Science databases were searched from 1 January 2000 to 10 August 2023. Twenty-five relevant studies where serum/plasma metabolic profiles were analyzed using different metabolomics approaches were identified. The studies showed different metabolic patterns of acute and chronic inflammatory diseases, yet changes in metabolites linked to the urea cycle and metabolism of arginine and proline were common features of both conditions. Although the reviewed reports showed only a few specific metabolites common for early RT response and inflammatory diseases, partly due to differences in metabolomics approaches, several common metabolic pathways linked to metabolites affected by radiation and inflammation were revealed. They included pathways involved in energy metabolism (e.g., metabolism of ketone bodies, mitochondrial electron transport chain, Warburg effect, citric acid cycle, urea cycle) and metabolism of certain amino acids (Arg, Pro, Gly, Ser, Met, Ala, Glu) and lipids (glycerolipids, branched-chain fatty acids). However, metabolites common for RT and inflammation-related diseases could show opposite patterns of changes. This could be exemplified by the lysophosphatidylcholine to phosphatidylcholine ratio (LPC/PC) that increased during chronic inflammation and decreased during the early phase of response to RT. One should be aware of dynamic metabolic changes during different phases of response to radiation, which involve increased levels of LPC in later phases. Hence, metabolomics studies that would address molecular features of both types of biological responses using comparable analytical and clinical approaches are needed to unravel the complexities of these phenomena, ultimately contributing to a deeper understanding of their impact on biological systems.PMID:37755280 | DOI:10.3390/metabo13091000

Metabolomic Reconfiguration in Primed Barley (<em>Hordeum vulgare</em>) Plants in Response to <em>Pyrenophora teres</em> f. <em>teres</em> Infection

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 7;13(9):997. doi: 10.3390/metabo13090997.ABSTRACTNecrotrophic fungi affect a wide range of plants and cause significant crop losses. For the activation of multi-layered innate immune defences, plants can be primed or pre-conditioned to rapidly and more efficiently counteract this pathogen. Untargeted and targeted metabolomics analyses were applied to elucidate the biochemical processes involved in the response of 3,5-dichloroanthranilic acid (3,5-DCAA) primed barley plants to Pyrenophora teres f. teres (Ptt). A susceptible barley cultivar ('Hessekwa') at the third leaf growth stage was treated with 3,5-DCAA 24 h prior to infection using a Ptt conidia suspension. The infection was monitored over 2, 4, and 6 days post-inoculation. For untargeted studies, ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-MS) was used to analyse methanolic plant extracts. Acquired data were processed to generate the data matrices utilised in chemometric modelling and multi-dimensional data mining. For targeted studies, selected metabolites from the amino acids, phenolic acids, and alkaloids classes were quantified using multiple reaction monitoring (MRM) mass spectrometry. 3,5-DCAA was effective as a priming agent in delaying the onset and intensity of symptoms but could not prevent the progression of the disease. Unsupervised learning methods revealed clear differences between the sample extracts from the control plants and the infected plants. Both orthogonal projection to latent structure-discriminant analysis (OPLS-DA) and 'shared and unique structures' (SUS) plots allowed for the extraction of potential markers of the primed and naïve plant responses to Ptt. These include classes of organic acids, fatty acids, amino acids, phenolic acids, and derivatives and flavonoids. Among these, 5-oxo-proline and citric acid were notable as priming response-related metabolites. Metabolites from the tricarboxylic acid pathway were only discriminant in the primed plant infected with Ptt. Furthermore, the quantification of targeted metabolites revealed that hydroxycinnamic acids were significantly more prominent in the primed infected plants, especially at 2 d.p.i. Our research advances efforts to better understand regulated and reprogrammed metabolic responses that constitute defence priming in barley against Ptt.PMID:37755277 | DOI:10.3390/metabo13090997

Effects of Heated Drinking Water during the Cold Season on Serum Biochemistry, Ruminal Fermentation, Bacterial Community, and Metabolome of Beef Cattle

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 6;13(9):995. doi: 10.3390/metabo13090995.ABSTRACTThis study explored the effects of drinking heated water in the cold seasons on the serum metabolism, rumen microbial fermentation, and metabolome of beef cattle. Twelve fattening cattle (642 ± 14.6 kg) aged 21 to 22 months were randomly and equally divided into two groups based on body weight: one receiving room-temperature water (RTW; average 4.39 ± 2.55 °C) and the other heated water (HW; average 26.3 ± 1.70 °C). The HW group displayed a significant decrease in serum glucose (p < 0.01) and non-esterified fatty acid (p < 0.01), but increases in insulin (p = 0.04) and high-density lipoprotein (p = 0.03). The rumen fermentation parameters of the HW group showed substantial elevations in acetate (p = 0.04), propionate (p < 0.01), isobutyrate (p = 0.02), and total volatile fatty acids (p < 0.01). Distinct bacterial composition differences were found between RTW and HW at the operational taxonomic unit (OTU) level (R = 0.20, p = 0.01). Compared to RTW, the HW mainly had a higher relative abundance of Firmicutes (p = 0.07) at the phylum level and had a lower abundance of Prevotella (p < 0.01), norank_f_p-215-o5 (p = 0.03), and a higher abundance of NK4A214_group (p = 0.01) and Lachnospiraceae_NK3A20_group (p = 0.05) at the genus level. In addition, NK4A214_group and Lachnospiraceae_NK3A20_group were significantly positively correlated with the rumen propionate and isovalerate (r > 0.63, p < 0.05). Prevotella was negatively correlated with rumen propionate and total volatile fatty acids (r = -0.61, p < 0.05). In terms of the main differential metabolites, compared to the RTW group, the expression of Cynaroside A, N-acetyl-L-glutamic acid, N-acetyl-L-glutamate-5-semialdehyde, and Pantothenic acid was significantly upregulated in HW. The differentially regulated metabolic pathways were primarily enriched in nitrogen metabolism, arginine biosynthesis, and linoleic acid metabolism. Prevotella was significantly positively correlated with suberic acid and [6]-Gingerdiol 3,5-diacetate (r > 0.59, p < 0.05) and was negatively correlated with Pantothenic acid and isoleucyl-aspartate (r < -0.65, p < 0.05). NK4A214_group was positively correlated with L-Methionine and glycylproline (r > 0.57, p < 0.05). Overall, our research demonstrates the important relationship between drinking water temperature and metabolic and physiological responses in beef cattle. Heating drinking water during cold seasons plays a pivotal role in modulating internal energy processes. These findings underscore the potential benefits of using heated water as a strategic approach to optimize energy utilization in beef cattle during the cold seasons.PMID:37755275 | DOI:10.3390/metabo13090995

Serum-Based Lipid Panels for Diagnosis of Idiopathic Parkinson's Disease

Wed, 27/09/2023 - 12:00
Metabolites. 2023 Sep 2;13(9):990. doi: 10.3390/metabo13090990.ABSTRACTParkinson's disease (PD) is a highly prevalent neurodegenerative movement disorder with an unclear etiology and a lack of definite diagnostic tests and effective treatments. About 95% of PD cases are idiopathic, in which none of the well-known genes underlying familial parkinsonism are mutated. We used untargeted liquid chromatography-mass spectrometry (LC-MS/MS) to profile the serum lipidome of 50 patients with different stages of idiopathic PD (early, mid, or advanced) and 45 age-matched controls. When comparing the PD patients to the control subjects, 169 lipids were significantly altered in both a univariate analysis and a multivariate partial least-squares discriminant analysis (PLS-DA). Compared to the controls, the patients with PD had higher levels of unsaturated triacylglycerides (e.g., TG O-56:9 and TG 52:3), saturated lysophosphatidylcholines (LPC 17:0, 16:0, and 15:0), and hydroxyeicosatetraenoic acid (12-HETE), while lower levels of phosphatidylserines (e.g., PS 40:4 and PS 16:0_22:4), sphingomyelins (SM 42:1), and ceramides (e.g., Cer 40:0 and 42:0) were found between the PD patients and the controls. A panel of 10 significantly altered lipids (PS 40:0, Cer 40:0, Cer 42:0, LPC 17:0, LPC 15:0, PC 37:7, PE O-40:8, PC O-42:4, FA 23:0, and SM 42:1) resulted in a strong receiver operating characteristic curve with an AUC = 0.974. This panel may, therefore, be useful for diagnosing PD. In addition, lipid panels may prove useful for distinguishing among the progression stages of PD. Using one-way ANOVA, 155 lipid species were significantly altered among the PD stages. Parkinson's disease progressed from the early to advanced stages with decreasing levels of PC 31:1, PC 38:4, and LPE 22:5. Conversely, LPC-O 20:0, PC O-42:3, FA 19:0, and FA 22:2 showed an increase in their levels with disease progression. Overall, this study shows an intriguing number of robust changes in specific serum lipids that may become useful for diagnosing PD and its progression, once panels have been validated in larger clinical trials and prospective studies.PMID:37755270 | DOI:10.3390/metabo13090990

Pages