Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Comprehensive <em>O</em>-Glycan Analysis by Porous Graphitized Carbon Nanoliquid Chromatography-Mass Spectrometry

Fri, 17/05/2024 - 12:00
Anal Chem. 2024 May 17. doi: 10.1021/acs.analchem.3c05826. Online ahead of print.ABSTRACTThe diverse and unpredictable structures of O-GalNAc-type protein glycosylation present a challenge for its structural and functional characterization in a biological system. Porous graphitized carbon (PGC) liquid chromatography (LC) coupled to mass spectrometry (MS) has become one of the most powerful methods for the global analysis of glycans in complex biological samples, mainly due to the extensive chromatographic separation of (isomeric) glycan structures and the information delivered by collision induced fragmentation in negative mode MS for structural elucidation. However, current PGC-based methodologies fail to detect the smaller glycan species consisting of one or two monosaccharides, such as the Tn (single GalNAc) antigen, which is broadly implicated in cancer biology. This limitation is caused by the loss of small saccharides during sample preparation and LC. Here, we improved the conventional PGC nano-LC-MS/MS-based strategy for O-glycan analysis, enabling the detection of truncated O-glycan species and improving isomer separation. This was achieved by the implementation of 2.7 μm PGC particles in both the trap and analytical LC columns, which provided an enhanced binding capacity and isomer separation for O-glycans. Furthermore, a novel mixed-mode PGC-boronic acid-solid phase extraction during sample preparation was established to purify a broad range of glycans in an unbiased manner, including the previously missed mono- and disaccharides. Taken together, the optimized PGC nano-LC-MS/MS platform presents a powerful component of the toolbox for comprehensive O-glycan characterization.PMID:38758656 | DOI:10.1021/acs.analchem.3c05826

Spatial and Temporal Resolution of Cyanobacterial Bloom Chemistry Reveals an Open-Ocean <em>Trichodesmium thiebautii</em> as a Talented Producer of Specialized Metabolites

Fri, 17/05/2024 - 12:00
Environ Sci Technol. 2024 May 17. doi: 10.1021/acs.est.3c10739. Online ahead of print.ABSTRACTWhile the ecological role that Trichodesmium sp. play in nitrogen fixation has been widely studied, little information is available on potential specialized metabolites that are associated with blooms and standing stock Trichodesmium colonies. While a collection of biological material from a T. thiebautii bloom event from North Padre Island, Texas, in 2014 indicated that this species was a prolific producer of chlorinated specialized metabolites, additional spatial and temporal resolution was needed. We have completed these metabolite comparison studies, detailed in the current report, utilizing LC-MS/MS-based molecular networking to visualize and annotate the specialized metabolite composition of these Trichodesmium blooms and colonies in the Gulf of Mexico (GoM) and other waters. Our results showed that T. thiebautii blooms and colonies found in the GoM have a remarkably consistent specialized metabolome. Additionally, we isolated and characterized one new macrocyclic compound from T. thiebautii, trichothilone A (1), which was also detected in three independent cultures of T. erythraeum. Genome mining identified genes predicted to synthesize certain functional groups in the T. thiebautii metabolites. These results provoke intriguing questions of how these specialized metabolites affect Trichodesmium ecophysiology, symbioses with marine invertebrates, and niche development in the global oligotrophic ocean.PMID:38758591 | DOI:10.1021/acs.est.3c10739

Untargeted Metabolomics Reveals Fruit Secondary Metabolites Alter Bat Nutrient Absorption

Fri, 17/05/2024 - 12:00
J Chem Ecol. 2024 May 17. doi: 10.1007/s10886-024-01503-z. Online ahead of print.ABSTRACTThe ecological interaction between fleshy fruits and frugivores is influenced by diverse mixtures of secondary metabolites that naturally occur in the fruit pulp. Although some fruit secondary metabolites have a primary role in defending the pulp against antagonistic frugivores, these metabolites also potentially affect mutualistic interactions. The physiological impact of these secondary metabolites on mutualistic frugivores remains largely unexplored. Using a mutualistic fruit bat (Carollia perspicillata), we showed that ingesting four secondary metabolites commonly found in plant tissues affects bat foraging behavior and induces changes in the fecal metabolome. Our behavioral trials showed that the metabolites tested typically deter bats. Our metabolomic surveys suggest that secondary metabolites alter, either by increasing or decreasing, the absorption of essential macronutrients. These behavioral and physiological effects vary based on the specific identity and concentration of the metabolite tested. Our results also suggest that a portion of the secondary metabolites consumed is excreted by the bat intact or slightly modified. By identifying key shifts in the fecal metabolome of a mutualistic frugivore caused by secondary metabolite consumption, this study improves our understanding of the effects of fruit chemistry on frugivore physiology.PMID:38758510 | DOI:10.1007/s10886-024-01503-z

Quantitative Non-targeted Screening to Profile Micropollutants in Sewage Sludge Used for Agricultural Field Amendments

Fri, 17/05/2024 - 12:00
Environ Sci Technol. 2024 May 17. doi: 10.1021/acs.est.4c01441. Online ahead of print.ABSTRACTA considerable number of micropollutants from human activities enter the wastewater network for removal. However, at the wastewater treatment plant (WWTP), some proportion of these compounds is retained in the sewage sludge (biosolids), and due to its high content of nutrients, sludge is widely applied as an agricultural fertilizer and becomes a means for the micropollutants to be introduced to the environment. Accordingly, a holistic semiquantitative nontarget screening was performed on sewage sludges from five different WWTPs using nanoflow liquid chromatography coupled to high-resolution Orbitrap mass spectrometry. Sixty-one inorganic elements were measured using inductively coupled plasma mass spectrometry. Across all sludges, the nontarget analysis workflow annotated >21,000 features with chemical structures, and after strict prioritization and filtering, 120 organic micropollutants with diverse chemical structures and applications such as pharmaceuticals, pesticides, flame retardants, and industrial and natural compounds were identified. None of the tested sludges were free from organic micropollutants. Pharmaceuticals contributed the largest share followed by pesticides and natural products. The predicted concentration of identified contaminants ranged between 0.2 and 10,881 ng/g dry matter. Through quantitative nontarget analysis, this study comprehensively demonstrated the occurrence of cocktails of micropollutants in sewage sludges.PMID:38758285 | DOI:10.1021/acs.est.4c01441

Design, synthesis, antitumor activity and NMR-based metabolomics of novel amino substituted tetracyclic imidazo[4,5-b]pyridine derivatives

Fri, 17/05/2024 - 12:00
ChemMedChem. 2024 May 17:e202300633. doi: 10.1002/cmdc.202300633. Online ahead of print.ABSTRACTNewly prepared tetracyclic imidazo[4,5-b]pyridine derivatives were synthesized to study their antiproliferative activity against human cancer cells. Additionally, the structure-activity was studied to confirm the impact of the N atom position in pyridine nuclei as well as the chosen amino side chains on antiproliferative activity. Targeted amino substituted regioisomers were prepared by using uncatalyzed amination from corresponding chloro substituted precursors. The most active compounds 6a, 8 and 10 showed improved activity in comparison to standard drug etoposide with IC50 values in a nanomolar range of concentration (0.2 - 0.9 μM). NMR-based metabolomics is a powerful instrument to elucidate activity mechanism of new chemotherapeutics. Multivariate and univariate statistical analysis of metabolic profiles of non-small cell lung cancer cells before and after exposure to 6a revealed significant changes in metabolism of essential amino acids, glycerophospholipids and oxidative defense. Insight into the changes of metabolic pathways that are heavily involved in cell proliferation and survival provide valuable guidelines for more detailed analysis of activity metabolism and possible targets of this class of bioactive compounds.PMID:38757872 | DOI:10.1002/cmdc.202300633

A PET-Surrogate Signature for the Interrogation of the Metabolic Status of Breast Cancers

Fri, 17/05/2024 - 12:00
Adv Sci (Weinh). 2024 May 17:e2308255. doi: 10.1002/advs.202308255. Online ahead of print.ABSTRACTMetabolic alterations in cancers can be exploited for diagnostic, prognostic, and therapeutic purposes. This is exemplified by 18F-fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET), an imaging tool that relies on enhanced glucose uptake by tumors for diagnosis and staging. By performing transcriptomic analysis of breast cancer (BC) samples from patients stratified by FDG-PET, a 54-gene signature (PETsign) is identified that recapitulates FDG uptake. PETsign is independently prognostic of clinical outcome in luminal BCs, the most common and heterogeneous BC molecular subtype, which requires improved stratification criteria to guide therapeutic decision-making. The prognostic power of PETsign is stable across independent BC cohorts and disease stages including the earliest BC stage, arguing that PETsign is an ab initio metabolic signature. Transcriptomic and metabolomic analysis of BC cells reveals that PETsign predicts enhanced glycolytic dependence and reduced reliance on fatty acid oxidation. Moreover, coamplification of PETsign genes occurs frequently in BC arguing for their causal role in pathogenesis. CXCL8 and EGFR signaling pathways feature strongly in PETsign, and their activation in BC cells causes a shift toward a glycolytic phenotype. Thus, PETsign serves as a molecular surrogate for FDG-PET that could inform clinical management strategies for BC patients.PMID:38757578 | DOI:10.1002/advs.202308255

Identification of Hyperuricemia Alleviating Peptides from Yellow Tuna <em>Thunnus albacares</em>

Fri, 17/05/2024 - 12:00
J Agric Food Chem. 2024 May 17. doi: 10.1021/acs.jafc.3c09901. Online ahead of print.ABSTRACTThe development of food-derived antihyperuricemic substances is important for alleviating hyperuricemia (HUA) and associated inflammation. Here, novel peptides fromThunnus albacares (TAP) with strong antihyperuricemic activity were prepared. TAP was prepared by alkaline protease (molecular weight <1000 Da), with an IC50 value of xanthine oxidase inhibitory activity of 2.498 mg/mL, and 5 mg/mL TAP could reduce uric acid (UA) by 33.62% in human kidney-2 (HK-2) cells (P < 0.01). Mice were fed a high-purine diet and injected with potassium oxonate to induce HUA. Oral administration of TAP (600 mg/kg/d) reduced serum UA significantly by 42.22% and increased urine UA by 79.02% (P < 0.01) via regulating urate transporters GLUT9, organic anion transporter 1, and ATP-binding cassette subfamily G2. Meantime, TAP exhibited hepatoprotective and nephroprotective effects, according to histological analysis. Besides, HUA mice treated with TAP showed anti-inflammatory activity by decreasing the levels of toll-like receptor 4, nuclear factors-κB p65, NLRP3, ASC, and Caspase-1 in the kidneys (P < 0.01). According to serum non-targeted metabolomics, 91 differential metabolites between the MC and TAP groups were identified, and purine metabolism was considered to be the main pathway for TAP alleviating HUA. In a word, TAP exhibited strong antihyperuricemic activity both in vitro and in vivo.PMID:38757561 | DOI:10.1021/acs.jafc.3c09901

Variation of terpene alkaloids in Daphniphyllum macropodum across plants and tissues

Fri, 17/05/2024 - 12:00
New Phytol. 2024 May 17. doi: 10.1111/nph.19814. Online ahead of print.ABSTRACTDaphniphyllum macropodum produces alkaloids that are structurally complex with polycyclic, stereochemically rich carbon skeletons. Understanding how these compounds are formed by the plant may enable exploration of their biological function and bioactivities. We employed multiple metabolomics techniques, including a workflow to annotate compounds in the absence of standards, to compare alkaloid content across plants and tissues. Different alkaloid structural types were found to have distinct distributions between genotypes, between tissues and within tissues. Alkaloid structural types also showed different isotope labelling enrichments that matched their biosynthetic relationships. The work suggests that mevalonate derived 30-carbon alkaloids are formed in the phloem region before their conversion to 22-carbon alkaloids which accumulate in the epidermis. This sets the stage for further investigation into the biosynthetic pathway.PMID:38757546 | DOI:10.1111/nph.19814

Mechanisms of epigallocatechin gallate (EGCG) in ameliorating hyperuricemia: insights into gut microbiota and intestinal function in a mouse model

Fri, 17/05/2024 - 12:00
Food Funct. 2024 May 17. doi: 10.1039/d4fo01606h. Online ahead of print.ABSTRACTEpigallocatechin gallate (EGCG), a prominent bioactive compound found in tea, offers numerous health benefits. Previous studies have highlighted its potential in mitigating hyperuricemia. In this study, hyperuricemic mice induced by potassium oxonate (PO) were treated with EGCG or the anti-hyperuricemia medication allopurinol (AP) to investigate the mechanisms underlying their anti-hyperuricemic effects. The results demonstrated that both EGCG and AP significantly reduced serum uric acid (UA) levels. Further analysis revealed that EGCG promoted the expression of UA secretion transporter genes (Oat1 and Oct1) while inhibiting the expression of UA reabsorption transporter genes (Urat1 and Glut9) in the kidney. By 16S rDNA sequencing, EGCG, but not AP, was found to alter the composition of the gut microbiota. Notably, EGCG induced significant changes in the relative abundance of specific bacteria such as Lactobacillus, Faecalibaculum, and Bifidobacterium, which displayed high correlations with serum UA levels and UA-related gene expression. Metabolomic analysis suggested that EGCG-induced modifications in bacterial metabolites might contribute to the alleviation of hyperuricemia. Transcriptomic analysis of the intestinal epithelium identifies 191 differentially expressed genes (DEGs) in EGCG-treated mice, including 8 purine-related genes. This study elucidates the anti-hyperuricemic mechanisms of EGCG, particularly its influence on the gut microbiota and gene expression in the intestinal epithelium.PMID:38757391 | DOI:10.1039/d4fo01606h

Heat-induced structural and chemical changes to a computationally designed miniprotein

Fri, 17/05/2024 - 12:00
Protein Sci. 2024 Jun;33(6):e4991. doi: 10.1002/pro.4991.ABSTRACTThe de novo design of miniprotein inhibitors has recently emerged as a new technology to create proteins that bind with high affinity to specific therapeutic targets. Their size, ease of expression, and apparent high stability makes them excellent candidates for a new class of protein drugs. However, beyond circular dichroism melts and hydrogen/deuterium exchange experiments, little is known about their dynamics, especially at the elevated temperatures they seemingly tolerate quite well. To address that and gain insight for future designs, we have focused on identifying unintended and previously overlooked heat-induced structural and chemical changes in a particularly stable model miniprotein, EHEE_rd2_0005. Nuclear magnetic resonance (NMR) studies suggest the presence of dynamics on multiple time and temperature scales. Transiently elevating the temperature results in spontaneous chemical deamidation visible in the NMR spectra, which we validate using both capillary electrophoresis and mass spectrometry (MS) experiments. High temperatures also result in greatly accelerated intrinsic rates of hydrogen exchange and signal loss in NMR heteronuclear single quantum coherence spectra from local unfolding. These losses are in excellent agreement with both room temperature hydrogen exchange experiments and hydrogen bond disruption in replica exchange molecular dynamics simulations. Our analysis reveals important principles for future miniprotein designs and the potential for high stability to result in long-lived alternate conformational states.PMID:38757381 | DOI:10.1002/pro.4991

Genetically predicted blood metabolites mediate the association between circulating immune cells and pancreatic cancer: A Mendelian randomization study

Fri, 17/05/2024 - 12:00
J Gene Med. 2024 May;26(5):e3691. doi: 10.1002/jgm.3691.ABSTRACTBACKGROUND: Pancreatic cancer is characterized by metabolic dysregulation and unique immunological profiles. Nevertheless, the comprehensive understanding of immune and metabolic dysregulation of pancreatic cancer remains unclear. In the present study, we aimed to investigate the causal relationship of circulating immune cells and pancreatic cancer and identify the blood metabolites as potential mediators.METHODS: The exposure and outcome genome-wide association studies (GWAS) data used in the present study were obtained from the GWAS open-access database (https://gwas.mrcieu.ac.uk). The study used 731 circulating immune cell features, 1400 types of blood metabolites and pancreatic cancer from GWAS. We then performed bidirectional Mendelian randomization (MR) analyses to explore the causal relationships between the circulating immune cells and pancreatic cancer, and two-step MR to discover potential mediating blood metabolites in this process. All statistical analyses were performed in R software. The STROBE-MR (i.e. Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization) checklist for the reporting of MR studies was also used.RESULTS: MR analysis identified seven types of circulating immune cells causally associated with pancreatic cancer. Furthermore, there was no strong evidence that genetically predicted pancreatic cancer had an effect on these seven types of circulating immune cells. Further two-step MR analysis found 10 types of blood metabolites were causally associated with pancreatic cancer and the associations between circulating CD39+CD8+ T cells and pancreatic cancer were mediated by blood orotates with proportions of 5.18% (p = 0.016).CONCLUSIONS: The present study provides evidence supporting the causal relationships between various circulating immune cells, especially CD39+CD8+ T cells, and pancreatic cancer, with a potential effect mediated by blood orotates. Further research is needed on additional risk factors as potential mediators and establish a comprehensive immunity-metabolism network in pancreatic cancer.PMID:38757222 | DOI:10.1002/jgm.3691

Integrated HS-GC-IMS and UPLC-Q-Orbitrap HRMS-based metabolomics revealed the characteristics and differential volatile and nonvolatile metabolites of different citrus peels

Fri, 17/05/2024 - 12:00
Curr Res Food Sci. 2024 May 1;8:100755. doi: 10.1016/j.crfs.2024.100755. eCollection 2024.ABSTRACTCitrus is an important genus in the Rutaceae family, and citrus peels can be used in both food and herbal medicine. However, the bulk of citrus peels are discarded as waste by the fruit processing industry, causing environmental pollution. This study aimed to provide guidelines for the rational and effective use of citrus peels by elucidating the volatile and nonvolatile metabolites within them using metabolomics based on headspace-gas chromatography-ion mobility spectrometry and ultra-high-performance liquid chromatography-Q-Orbitrap high-resolution mass spectrometry. In addition, the antioxidant activities of the citrus peels were evaluated using DPPH radical scavenging, ABTS radical scavenging, and ferric reducing antioxidant power. In total, 103 volatile and 53 nonvolatile metabolites were identified and characterized. Alcohols, aldehydes, and terpenes constituted 87.36% of the volatile metabolites, while flavonoids and carboxylic acids accounted for 85.46% of the nonvolatile metabolites. Furthermore, (Z)-2-penten-1-ol, L-pipecolinic acid, and limonin were identified as characteristic components of Citrus reticulata Blanco cv. Ponkan (PK), C. reticulata 'Unshiu' (CLU), and C. reticulata 'Wo Gan' (WG), respectively. Principal component analysis and partial least squares discriminant analysis indicated that C. reticulata Blanco 'Chun Jian' (CJ), PK, CLU, and C. reticulata 'Dahongpao' (DHP) were clustered together. DHP is a traditional Chinese medicine documented in the Chinese Pharmacopoeia, suggesting that the chemical compositions of CJ, PK, and CLU may also have medicinal values similar to those of DHP. Moreover, DHP, PK, C. reticulata 'Ai Yuan 38'(AY38), CJ, C. reticulata 'Gan Ping'(GP), and C. reticulata 'Qing Jian'(QJ) displayed better antioxidant activities, recommending their use as additives in cosmetics and food. Correlation analysis suggested that some polyphenols including tangeritin, nobiletin, skullcapflavone II, genistein, caffeic acid, and isokaempferide were potential antioxidant compounds in citrus peel. The results of this study deepen our understanding of the differences in metabolites and antioxidant activities of different citrus peel varieties and ultimately provide guidance for the full and rational use of citrus peels.PMID:38756737 | PMC:PMC11096708 | DOI:10.1016/j.crfs.2024.100755

Metabolomics for early pancreatic cancer detection in plasma samples from a Swedish prospective population-based biobank

Fri, 17/05/2024 - 12:00
J Gastrointest Oncol. 2024 Apr 30;15(2):755-767. doi: 10.21037/jgo-23-930. Epub 2024 Apr 28.ABSTRACTBACKGROUND: Pancreatic ductal adenocarcinoma (pancreatic cancer) is often detected at late stages resulting in poor overall survival. To improve survival, more patients need to be diagnosed early when curative surgery is feasible. We aimed to identify circulating metabolites that could be used as early pancreatic cancer biomarkers.METHODS: We performed metabolomics by liquid and gas chromatography-mass spectrometry in plasma samples from 82 future pancreatic cancer patients and 82 matched healthy controls within the Northern Sweden Health and Disease Study (NSHDS). Logistic regression was used to assess univariate associations between metabolites and pancreatic cancer risk. Least absolute shrinkage and selection operator (LASSO) logistic regression was used to design a metabolite-based risk score. We used receiver operating characteristic (ROC) analyses to assess the discriminative performance of the metabolite-based risk score.RESULTS: Among twelve risk-associated metabolites with a nominal P value <0.05, we defined a risk score of three metabolites [indoleacetate, 3-hydroxydecanoate (10:0-OH), and retention index (RI): 2,745.4] using LASSO. A logistic regression model containing these three metabolites, age, sex, body mass index (BMI), smoking status, sample date, fasting status, and carbohydrate antigen 19-9 (CA 19-9) yielded an internal area under curve (AUC) of 0.784 [95% confidence interval (CI): 0.714-0.854] compared to 0.681 (95% CI: 0.597-0.764) for a model without these metabolites (P value =0.007). Seventeen metabolites were significantly associated with pancreatic cancer survival [false discovery rate (FDR) <0.1].CONCLUSIONS: Indoleacetate, 3-hydroxydecanoate (10:0-OH), and RI: 2,745.4 were identified as the top candidate biomarkers for early detection. However, continued efforts are warranted to determine the usefulness of these metabolites as early pancreatic cancer biomarkers.PMID:38756646 | PMC:PMC11094504 | DOI:10.21037/jgo-23-930

Unveiling the gut microbiota and metabolite profiles in guinea pigs with form deprivation myopia through 16S rRNA gene sequencing and untargeted metabolomics

Fri, 17/05/2024 - 12:00
Heliyon. 2024 May 6;10(9):e30491. doi: 10.1016/j.heliyon.2024.e30491. eCollection 2024 May 15.ABSTRACTAIM: The aim of this study was to confirm the presence of the form deprivation myopia (FDM) guinea pig eye-gut axis and investigate the relationship between serum vasoactive intestinal peptide (VIP), lipopolysaccharides (LPS), specific gut microbiota and their metabolites.METHOD: 20 specific-pathogen-free (SPF) guinea pigs were divided into the FDM and the control(Con) group. Following model induction, serum levels of VIP and LPS were quantified. A combination of 16S ribosomal ribosomal Ribonucleic Acid (rRNA) gene sequencing, non-targeted metabolomics and bioinformatics analysis were employed to identify disparities in gut microbiota and metabolites between the two groups of guinea pigs.RESULT: Compared to the control group, FDM guinea pigs exhibited a significant trend towards myopia, along with significantly elevated concentrations of LPS and VIP (p < 0.0001). Furthermore, Ruminococcus_albus emerged as the predominant bacterial community enriched in FDM (p < 0.05), and demonstrated positive correlations with 10 metabolites, including l-Glutamic acid, Additionally, Ruminococcus_albus exhibited positive correlations with VIP and LPS levels (p < 0.05).CONCLUSION: The findings suggest that the Ruminococcus_Albus and glutamate metabolic pathways play a significant role in myopia development, leading to concurrent alterations in serum VIP and LPS levels in FDM guinea pigs. This underscores the potential of specific gut microbiota and their metabolites as pivotal biomarkers involved in the pathogenesis of myopia.PMID:38756593 | PMC:PMC11096930 | DOI:10.1016/j.heliyon.2024.e30491

Is aromatic plants environmental health engineering (APEHE) a leverage point of the earth system?

Fri, 17/05/2024 - 12:00
Heliyon. 2024 May 3;10(9):e30322. doi: 10.1016/j.heliyon.2024.e30322. eCollection 2024 May 15.ABSTRACTIt is important to note that every ecological niche in an ecosystem is significant. This study aims to assess the importance of medicinal and aromatic plants (MAPs) in the ecosystem from multiple perspectives. A primary model of Aromatic Plants Environmental Health Engineering (APEHE) has been designed and constructed. The APEHE system was used to collect aerosol compounds, and it was experimentally verified that these compounds have the potential to impact human health by binding to AKT1 as the primary target, and MMP9 and TLR4 as secondary targets. These compounds may indirectly affect human immunity by reversing drug resistance in drug-resistant bacteria in the nasal cavity. This is mainly achieved through combined mutations in sdhA, scrA, and PEP. Our findings are based on Network pharmacology and molecular binding, drug-resistance rescue experiments, as well as combined transcriptomics and metabolomics experiments. It is suggested that APEHE may have direct or indirect effects on human health. We demonstrate APEHE's numerous potential benefits, such as attenuation and elimination of airborne microorganisms in the environment, enhancing carbon and nitrogen storage in terrestrial ecosystems, promoting the formation of low-level clouds and strengthening the virtuous cycle of Earth's ecosystems. APEHE also supports the development of transdisciplinary technologies, including terpene energy production. It facilitates the creation of a sustainable circular economy and provides additional economic advantages through urban optimisation, as well as fresh insights into areas such as the habitability of other planets. APEHE has the potential to serve as a leverage point for the Earth system. We have created a new research direction.PMID:38756557 | PMC:PMC11096952 | DOI:10.1016/j.heliyon.2024.e30322

Effects and mechanisms of proanthocyanidins-derived carbon dots on alleviating salt stress in rice by muti-omics analysis

Fri, 17/05/2024 - 12:00
Food Chem X. 2024 May 1;22:101422. doi: 10.1016/j.fochx.2024.101422. eCollection 2024 Jun 30.ABSTRACTCarbon dots (CDs) with different structures were prepared by electrolysis (PE-CDs) and hydrothermal (PH-CDs) methods using proanthocyanidins as precursors. The smaller size and lower zeta potential enabled the PE-CDs treated rice seedlings to exhibit greater resistance to salt stress. The fresh weight of rice seedlings under salt stress was significantly increased by spraying CDs every other day for two weeks. PE-CDs treated group exhibited a faster electron transport rate, and the SOD activity and flavonoid content were 2.5-fold and 0.23-fold higher than those of the salt stress-treated group. Furthermore, the metabolomics and transcriptomics analysis revealed that the PsaC gene of photosystem I was significantly up-regulated under PE-CDs treatment, which accelerated electron transfer in photosystem I. The up-regulation of BX1 and IGL genes encoding indole synthesis allowed rice to enhance stress tolerance through tryptophan and benzoxazine biosynthesis pathways. These findings offer help in purposefully synthesizing CDs and boosting food production.PMID:38756474 | PMC:PMC11096822 | DOI:10.1016/j.fochx.2024.101422

Insights into the effects of saline forage on the meat quality of Tibetan sheep by metabolome and multivariate analysis

Fri, 17/05/2024 - 12:00
Food Chem X. 2024 Apr 26;22:101411. doi: 10.1016/j.fochx.2024.101411. eCollection 2024 Jun 30.ABSTRACTThis work aimed to investigate how two different types of forage (saline and alkaline) impact the meat quality and muscle metabolism of Tibetan sheep. An integrative multi-omics analysis of meat quality and different metabolites was performed using untargeted and targeted metabolomics approaches. The research results indicated that GG grass (saline and alkaline forage) possessed superior characteristics in terms of apparent quality and secondary metabolite content compared with HG grass (Non saline alkali forage), regardless of the targeted metabolites or non-targeted ones. Simultaneously, under stress conditions, the carbohydrates-rich salt-alkali grass play a significant role in slowing down the decline in pH, increasing the unsaturated fatty acid content and reducing the thawing loss in Tibetan sheep. This study provides an understanding of the impact of different salt-alkali grass on the quality of Tibetan sheep meat, while providing a scientific basis for the future development of salt-alkali livestock industry.PMID:38756473 | PMC:PMC11096943 | DOI:10.1016/j.fochx.2024.101411

<sup>1</sup>H-nuclear magnetic resonance analysis reveals dynamic changes in the metabolic profile of patients with severe burns

Fri, 17/05/2024 - 12:00
Burns Trauma. 2024 May 15;12:tkae007. doi: 10.1093/burnst/tkae007. eCollection 2024.ABSTRACTBACKGROUND: Severe burn injury causes a hypermetabolic response, resulting in muscle protein catabolism and multiple organ damage syndrome. However, this response has not yet been continuously characterized by metabolomics in patients. This study aims to quantify temporal changes in the metabolic processes of patients with severe burns.METHODS: We employed 1H-nuclear magnetic resonance (NMR) spectroscopy to scrutinize metabolic alterations during the initial 35 days following burn injury in a cohort of 17 adult patients with severe burns, with 10 healthy individuals included as controls. Plasma specimens were collected from patients on postburn days 1, 3, 7, 14, 21, 28 and 35. After performing multivariate statistical analysis, repeated-measures analysis of variance and time-series analysis, we quantified changes in metabolite concentrations.RESULTS: Among the 36 metabolites quantified across 119 samples from burn patients, branched-chain amino acids, glutamate, glycine, glucose, pyruvate, lactate, trimethylamine N-oxide and others exhibited obvious temporal variations in concentration. Notably, these metabolites could be categorized into three clusters based on their temporal characteristics. The initial response to injury was characterized by changes in lactate and amino acids, while later changes were driven by an increase in fatty acid catabolism and microbial metabolism, leading to the accumulation of ketone bodies and microbial metabolites.CONCLUSIONS: Metabolomics techniques utilizing NMR have the potential to monitor the intricate processes of metabolism in patients with severe burns. This study confirmed that the third day after burn injury serves as the boundary between the ebb phase and the flow phase. Furthermore, identification of three distinct temporal patterns of metabolites revealed the intrinsic temporal relationships between these metabolites, providing clinical data for optimizing therapeutic strategies.PMID:38756185 | PMC:PMC11097601 | DOI:10.1093/burnst/tkae007

Metabolomic and morphologic surveillance reveals the impact of lactic acid-treated barley on in vitro ruminal fermentation

Thu, 16/05/2024 - 12:00
Anim Biosci. 2024 May 7. doi: 10.5713/ab.23.0550. Online ahead of print.ABSTRACTOBJECTIVE: Lactic acid (LA) treatment of cereals is known to improve ruminant performance. However, changes in cereal nutrient levels and variations in rumen fermentation remain unclear.METHOD: This study was designed to compare the effects of 5% LA treatment on the trophic and morphological characteristics of barley and to discover the differences in rumen fermentation characteristics and metabolomes between LA-treated and untreated barley.RESULTS: Compared with those of untreated barley (BA), the dry matter (DM), crude protein (CP), ash and water-soluble carbohydrate contents of barley plants treated with 5% LA for 48 h (BALA) decreased, but the resistant starch (RS) and non-fiber carbohydrate contents increased. Moreover, the amount of proteinaceous matrix in BA decreased in response to LA treatment. During in vitro fermentation, BALA had a greater pH but lower dry matter disappearance and ammonia, methane, and short-chain fatty acid levels than BA. The differential metabolites between BA and BALA were clustered into metabolic pathways such as purine metabolism, lysine degradation, and linoleic acid metabolism. Observable differences in ultrastructure between BALA and BA were noted during fermentation.CONCLUSION: Lactic treatment altered barley nutrient content, including DM, CP, RS, ash, water-soluble carbohydrates and non-fiber carbohydrates, and affected barley ultrastructure. These variations led to significant and incubation time-dependent changes in the in vitro fermentation characteristics and metabolome.PMID:38754844 | DOI:10.5713/ab.23.0550

Deciphering the enigma of the function of alpha-tocopherol as a vitamin

Thu, 16/05/2024 - 12:00
Free Radic Biol Med. 2024 May 14:S0891-5849(24)00463-5. doi: 10.1016/j.freeradbiomed.2024.05.028. Online ahead of print.ABSTRACTα-Tocopherol (α-T) is a vitamin, but the reasons for the α-T requirement are controversial. Given that α-T deficiency was first identified in embryos, we studied to the premier model of vertebrate embryo development, the zebrafish embryo. We developed an α-T-deficient diet for zebrafish and used fish consuming this diet to produce α-T deficient (E-) embryos. We showed that α-T deficiency causes increased lipid peroxidation, leading to metabolic dysregulation that impacts both biochemical and morphological changes at very early stages in development. These changes occur at an early developmental window, which takes place prior to an analogous time to when a human knows she is pregnant. We found that α-T limits the chain reaction of lipid peroxidation and protects metabolic pathways and integrated gene expression networks that control embryonic development. Importantly, not only is α-T critical during early development, but the neurodevelopmental process is highly dependent on α-T trafficking by the α-T transfer protein (TTPa). Data from both gene expression and evaluation of the metabolome in E- embryos suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is dysregulated-mTOR is a master regulatory mechanism, which controls both metabolism and neurodevelopment. Our findings suggest that TTPa is needed not only for regulation of plasma α-T in adults but is a key regulator during embryogenesis.PMID:38754744 | DOI:10.1016/j.freeradbiomed.2024.05.028

Pages