PubMed
A Look into Ocular Diseases: The Pivotal Role of Omics Sciences in Ophthalmology Research
ACS Meas Sci Au. 2024 Feb 22;4(3):247-259. doi: 10.1021/acsmeasuresciau.3c00067. eCollection 2024 Jun 19.ABSTRACTPrecision medicine is a new medical approach which considers both population characteristics and individual variability to provide customized healthcare. The transition from traditional reactive medicine to personalized medicine is based on a biomarker-driven process and a deep knowledge of biological mechanisms according to which the development of diseases occurs. In this context, the advancements in high-throughput omics technologies represent a unique opportunity to discover novel biomarkers and to provide an unbiased picture of the biological system. One of the medical fields in which omics science has started to be recently applied is that of ophthalmology. Ocular diseases are very common, and some of them could be highly disabling, thus leading to vision loss and blindness. The pathogenic mechanism of most ocular diseases may be dependent on various genetic and environmental factors, whose effect has not been yet completely understood. In this context, large-scale omics approaches are fundamental to have a comprehensive evaluation of the whole system and represent an essential tool for the development of novel therapies. This Review summarizes the recent advancements in omics science applied to ophthalmology in the last ten years, in particular by focusing on proteomics, metabolomics and lipidomics applications from an analytical perspective. The role of high-efficiency separation techniques coupled to (high-resolution) mass spectrometry ((HR)MS) is also discussed, as well as the impact of sampling, sample preparation and data analysis as integrating parts of the analytical workflow.PMID:38910860 | PMC:PMC11191728 | DOI:10.1021/acsmeasuresciau.3c00067
A Study on the Protective Impact of Resveratrol on Liver Damage in Rats with Obstructive Jaundice
Comb Chem High Throughput Screen. 2024 Jun 21. doi: 10.2174/0113862073306667240606115002. Online ahead of print.ABSTRACTBACKGROUND: Obstructive Jaundice (OJ) is a common clinical condition with potential outcomes, including hepatocyte necrosis, bile duct hyperplasia, significant cholestatic liver fibrosis, and, in severe cases, liver failure. Resveratrol (RES), a polyphenol present in grapes and berries, has demonstrated efficacy in improving OJ. However, the precise mechanism of its action remains unclear.METHODS: In this study, we employed network pharmacology to investigate the underlying molecular mechanism of RES in the treatment of OJ. The targets of RES were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), SuperPred, and SwissTargetPrediction database. The targets related to OJ were gathered from the DisGeNET, GeneCards, DrugBank, and Online Mendelian Inheritance in Man (OMIM) databases, and the intersection of these targets was determined using Venny2.1.0. Subsequently, an active component-target network was constructed using Cytoscape software. The Protein-Protein Interaction (PPI) network was generated using the String database and Cytoscape software. Following this, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the Bioconductor platform. Finally, quantitative Real-Time PCR (qRT-PCR), Western Blotting (WB), and Enzyme-Linked Immunosorbent Assay (ELISA) were employed to assess RNA and protein expression levels in related pathways.RESULTS: The findings revealed a selection of 56 potential targets for RES, and a search through the online database identified 2,742 OJ-related targets with overlapping in 27 targets. In the PPI network, mTOR, CYP2C9, CYP1A1, CYP3A4, AHR, ESR1, and HSD17B1 emerged as core targets. KEGG analyses demonstrated that the primary pathways of RES in treating OJ, particularly those related to lipid metabolism, include linoleic acid metabolism, arachidonic acid metabolism, metabolism of xenobiotics by cytochrome P450, lipid and atherosclerosis, tyrosine metabolism, steroid hormone biosynthesis, and pentose and glucuronate interconversions signaling pathways. Furthermore, in vivo experiments indicated that RES significantly ameliorated liver injury induced by Common Bile Duct Ligation (CBDL) in rats with OJ. It lowered serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, reduced liver tissue MDA levels, increased glutathione (GSH) content, and enhanced activity of superoxide dismutase (SOD), alleviating liver damage. Metabolomics analysis revealed that the therapeutic effect of RES in OJ involved alterations in lipid metabolic pathways, hinting at the potential mechanism of RES in treating OJ. ELISA, qRTPCR, and WB analyses confirmed lower expression levels of mTOR, CYP1A1, and CYP2C9 in the RES group compared to the model group, validating their involvement in the lipid metabolism pathway.CONCLUSION: In conclusion, RES exhibited a protective effect on liver function in rats with OJ. The underlying mechanism appears to be linked to antioxidant activity and modulation of lipid metabolism pathways.PMID:38910417 | DOI:10.2174/0113862073306667240606115002
Serum Metabolomics Reveals Metabolomic Profile and Potential Biomarkers in Asthma
Allergy Asthma Immunol Res. 2024 May;16(3):235-252. doi: 10.4168/aair.2024.16.3.235.ABSTRACTPURPOSE: Asthma is a highly heterogeneous disease. Metabolomics plays a pivotal role in the pathogenesis and development of asthma. The main aims of our study were to explore the underlying mechanism of asthma and to identify novel biomarkers through metabolomics approach.METHODS: Serum samples from 102 asthmatic patients and 18 healthy controls were collected and analyzed using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) system. Multivariate analysis and weighted gene co-expression network analysis (WGCNA) were performed to explore asthma-associated metabolomics profile and metabolites. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway enrichment analysis. Subsequently, 2 selected serum hub metabolites, myristoleic acid and dodecanoylcarnitine, were replicated in a validation cohort using ultra-high performance LC-MS/MS system (UHPLC-MS/MS).RESULTS: Distinct metabolomics profile of asthma was revealed by multivariate analysis. Then, 116 overlapped asthma-associated metabolites between multivariate analysis and WGCNA, including 12 hub metabolites, were identified. Clinical features-associated hub metabolites were also identified by WGCNA. Among 116 asthma-associated metabolites, Sphingolipid metabolism and valine, leucine and isoleucine biosynthesis were revealed by KEGG analysis. Furthermore, serum myristoleic acid and dodecanoylcarnitine were significantly higher in asthmatic patients than in healthy controls in validation cohort. Additionally, serum myristoleic acid and dodecanoylcarnitine demonstrated high sensitivities and specificities in predicting asthma.CONCLUSIONS: Collectively, asthmatic patients showed a unique serum metabolome. Sphingolipid metabolism and valine, leucine and isoleucine biosynthesis were involved in the pathogenesis of asthma. Furthermore, our results suggest the promising values of serum myristoleic acid and dodecanoylcarnitine for asthma diagnosis in adults.PMID:38910282 | DOI:10.4168/aair.2024.16.3.235
Exploring Biomarkers in Asthma: Insights From Serum Metabolomics
Allergy Asthma Immunol Res. 2024 May;16(3):211-213. doi: 10.4168/aair.2024.16.3.211.NO ABSTRACTPMID:38910279 | DOI:10.4168/aair.2024.16.3.211
Conjugated linoleic acid (CLA) modulates bovine peripheral blood mononuclear cells (PBMC) proteome in vitro
J Proteomics. 2024 Jun 21:105232. doi: 10.1016/j.jprot.2024.105232. Online ahead of print.ABSTRACTConjugated linoleic acid (CLA) is a group of natural isomers of the n-6 polyunsaturated fatty acid (PUFA) linoleic acid, exerting biological effects on cow physiology. This study assessed the impact of the mixture 50:50 (vol:vol) of CLA isomers (cis-9, trans-11 and trans-10, cis-12) on bovine peripheral blood mononuclear cells (PBMC) proteome, identifying 1608 quantifiable proteins. A supervised multivariate statistical analysis, sparse variant partial least squares - discriminant analysis (sPLS-DA) for paired data identified 407 discriminant proteins (DP), allowing the clustering between the CLA and controls. The ProteINSIDE workflow found that DP with higher abundance in the CLA group included proteins related to innate immune defenses (PLIN2, CD36, C3, C4, and AGP), with antiapoptotic (SERPINF2 and ITIH4) and antioxidant effects (HMOX1). These results demonstrated that CLA modulates the bovine PBMC proteome, supports the antiapoptotic and immunomodulatory effects observed in previous in vitro studies on bovine PBMC, and suggests a cytoprotective role against oxidative stress. SIGNIFICANCE: In this study, we report for the first time that the mixture 50:50 (vol:vol) of cis-9, trans-11, and trans-10, cis-12-CLA isomers modulates the bovine PBMC proteome. Our results support the immunomodulatory and antiapoptotic effects observed in bovine PBMC in vitro. In addition, the present study proposes a cytoprotective role of CLA mixture against oxidative stress. We suggest a molecular signature of CLA treatment based on combining a multivariate sparse discriminant analysis and a clustering method. This demonstrates the great value of sPLS-DA as an alternative option to identify discriminant proteins with relevant biological significance.PMID:38909954 | DOI:10.1016/j.jprot.2024.105232
Liver tissue lipids in metabolic dysfunction-associated steatotic liver disease with diabetes and obesity
Clin Res Hepatol Gastroenterol. 2024 Jun 21:102402. doi: 10.1016/j.clinre.2024.102402. Online ahead of print.ABSTRACTBACKGROUND: Diabetes and obesity are associated with altered lipid metabolism and hepatic steatosis. Studies suggest that increases in lipid accumulation in these patients with metabolic dysfunction-associated steatotic liver disease (MASLD) are not uniform for all lipid components. This study evaluates this variation.METHODS: A comprehensive lipidomic analysis of different lipid groups, were performed on liver tissue and plasma samples obtained at the time of histology from a well-defined cohort of 72 MASLD participants. The lipid profiles of controls were compared to those of MASLD patients with obesity, diabetes, or a combination of both.RESULTS: MASLD patients without obesity or diabetes exhibited distinct changes in the lipid profile of their liver tissue. The presence of diabetes or obesity further modified these lipid profiles (e.g., ceramide 47:7;4O), with positive or negative correlation (p<0.05). A step-wise increase (long-chain fatty acids, triglycerides, and ceramides) or decrease (ultra-long fatty acids, diglycerides, and phospholipids) for lipid groups was observed compared to control among patients with MASLD without obesity or diabetes to MASLD patients with obesity as a single risk factor, and MASLD patients with obesity and diabetes. Changes in lipids observed in the plasma did not align with their corresponding liver tissue findings.CONCLUSION: The changes observed in the composition of lipids are not similar in patients with obesity and diabetes among those with MASLD. This highlights the different metabolic processes at play. The presence of obesity or diabetes in patients with MASLD exacerbates these lipid derangements, underscoring the potential for targeted intervention in MASLD patients.PMID:38909684 | DOI:10.1016/j.clinre.2024.102402
Metabolic regulation of preimplantation embryo development in vivo and in vitro: Molecular mechanisms and insights
Biochem Biophys Res Commun. 2024 Jun 12;726:150256. doi: 10.1016/j.bbrc.2024.150256. Online ahead of print.ABSTRACTUnderstanding of embryonic development has led to the clinical application of Assisted Reproductive technologies (ART), with the resulting birth of millions of children. Recent developments in metabolomics, proteomics, and transcriptomics have brought to light new insights into embryonic growth dynamics, with implications spanning reproductive medicine, stem cell research, and regenerative medicine. The review explores the key metabolic processes and molecular pathways active during preimplantation embryo development, including PI3K-Akt, mTOR, AMPK, Wnt/β-catenin, TGF-β, Notch and Jak-Stat signaling pathways. We focused on analyzing the differences occurring in vitro as opposed to in vivo development and we discussed significant physiological and clinical implications.PMID:38909536 | DOI:10.1016/j.bbrc.2024.150256
Dietary succinate reduces fat deposition through gut microbiota and lipid metabolism in broilers
Poult Sci. 2024 Jun 6;103(8):103954. doi: 10.1016/j.psj.2024.103954. Online ahead of print.ABSTRACTSuccinate has been shown to be a potentially beneficial nutritional supplement with a diverse range of physiological functions. However, it remains unknown whether succinate supplementation regulates lipid metabolism in chickens. The aim of this study was to explore how succinate affects fat deposition and the underlying mechanism involved in broilers and to determine the most appropriate level of succinate supplementation in the diet. A total of 640 one-day-old male yellow-feathered broilers were randomly divided into 4 groups with 8 replicates and 20 broilers per replicate. A basal diet was provided to the control group (CON). The experimental broilers were fed diets containing 0.2% (L), 0.4% (M), or 0.6% (H) succinate and the study was lasted for 21 d. The linear (l) and quadratic (q) effects of succinate addition were determined. The results indicated that supplementation with 0.4% succinate reduced ADFI, serum triglycerides (l, q; P < 0.05), glucose (q; P < 0.05), and increased high-density lipidprotein cholesterol (l, q; P < 0.05) concentrations in broilers. Moreover, 0.4% succinate affects lipid metabolism by decreasing the abdominal fat percentage and adipocyte surface area, the expression of genes that promote liposynthesis in the abdominal fat and liver, as well as increasing the expression of genes that promote lipolysis in the abdominal fat and liver. In addition, increased cecal propionic acid content (q, P < 0.05) was found in the M group compared to the CON group. The 16S rRNA sequence analysis showed that group M altered cecum microbial composition by increasing the abundance of genera such as Blautia and Sellimonas (P < 0.05). LC-MS metabolomic analysis revealed that the differential metabolites between the M and CON groups were enriched in amino acid-related pathways. In conclusion, the optimum level of succinate added to broiler diets in the present study was 0.4%. Succinate can potentially reduce fat accumulation in broilers by modulating the composition of the gut flora and amino acid metabolism related to lipid metabolism.PMID:38909508 | DOI:10.1016/j.psj.2024.103954
Impact of dietary protein and energy levels on fatty acid profile, gut microbiome and cecal metabolome in native growing chickens
Poult Sci. 2024 May 29;103(8):103917. doi: 10.1016/j.psj.2024.103917. Online ahead of print.ABSTRACTThe present study investigated the optimal concentration of dietary ME and CP for the fatty acid profile of meat, gut microbiome, and cecal metabolome in Danzhou chickens from 120 to 150 d of age. A total of seven hundred and twenty 120-d-old Danzhou female chickens, with a similar BW, were randomly allocated into 6 treatments with 6 replicates and each of 20 birds. The chickens were fed 2 levels of dietary ME (11.70 MJ/kg, 12.50 MJ/kg), and 3 levels of dietary CP (13%, 14%, and 15%). The results showed that dietary ME and CP levels didn't affect final BW, ADG, ADFI, and feed gain ratio (g: g) (P > 0.05). The serum concentrations of triglyceride, insulin, and glucose in the 12.50 MJ/kg group were the highest (P < 0.05). Dietary ME, CP levels, and their interactions affected (P < 0.05) the fatty acid content in the breast muscle, thigh muscle, and liver. The levels of C18:0, C20:0, C22:0, C22:1, C18:2, C18:3, C22:6, and SFA of the liver in the high ME group were higher than those in the low ME group (P < 0.05). The levels of C16:0, C14:1, C18:1, C22:5, SFA, MUFA and USFA in the low CP group were higher than the corresponding values in the other groups (P < 0.05). Dietary ME and CP levels altered the composition and relative abundance of microbiota in the cecum of chickens at various taxonomic levels to different extents. Significant effects of interactions were found between dietary ME and CP on the relative abundance of 10 species (P < 0.05), and among these species, 6 species belonged to the genus Bacteroides. Notably, the relative abundance of 2 probiotic species including Lactobacillus crispatus and Lactobacillus salivarius was significantly increased (P < 0.05) with increasing dietary ME level. There were 6 differential metabolites in the cecum, comprising thromboxane A2, 5,6-DHET, prostaglandin D2, 20-hydroxyeicosatetraenoic acid, 12(S)-HPETE and prostaglandin I2 significantly reduced (P < 0.05) with increasing the dietary ME level; all of them are involved in arachidonic acid metabolism. In conclusion, the present study suggested that the dietary levels of 12.50 MJ/kg ME and 14% CP enhanced meat quality in terms of fatty acid composition, and showed benefits for maintaining intestinal health via positive regulation of cecal microbiota in native growing Danzhou chickens.PMID:38909505 | DOI:10.1016/j.psj.2024.103917
Integrating metabolomics and transcriptomics to analyze the differences of breast muscle quality and flavor formation between Daweishan mini chicken and broiler
Poult Sci. 2024 May 31;103(8):103920. doi: 10.1016/j.psj.2024.103920. Online ahead of print.ABSTRACTThe quality and flavor of chicken are affected by muscle metabolites and related regulatory genes, and the molecular regulation mechanism of meat quality is different among different breeds of chicken. In this study, 40 one-day-old Daweishan mini chicken (DM) and Cobb broiler (CB) were selected from each group, with 4 replicates and 10 chickens in each replicate. The chickens were reared until 90 d of age under the same management conditions. Then, metabolomics and transcriptomics data of 90-day-old DM (n = 4) and CB (n = 4) were integrated to analyze metabolites affecting breast muscle quality and flavor, and to explore the important genes regulating meat quality and flavor related metabolites. The results showed that a total of 38 significantly different metabolites (SDMs) and 420 differentially expressed genes (DEGs) were detected in the breast muscle of the 2 breeds. Amino acid and lipid metabolism may be the cause of meat quality and flavor difference between DM and CB chickens, involving metabolites such as L-methionine, betaine, N6, N6, N6-Trimethyl-L-lysine, L-anserine, glutathione, glutathione disulfide, L-threonine, N-Acetyl-L-aspartic acid, succinate, choline, DOPC, SOPC, alpha-linolenic acid, L-palmitoylcarnitine, etc. Important regulatory genes with high correlation with flavor amino acids (GATM, GSTO1) and lipids (PPARG, LPL, PLIN1, SCD, ANGPTL4, FABP7, GK, B4GALT6, UGT8, PLPP4) were identified by correlation analysis, and the gene-metabolite interaction network of breast muscle mass and flavor formation in DM chicken was constructed. This study showed that there were significant differences in breast metabolites between DM and CB chickens, mainly in amino acid and lipid metabolites. These 2 kinds of substances may be the main reasons for the difference in breast muscle quality and flavor between the 2 breeds. In general, this study could provide a theoretical basis for further research on the molecular regulatory mechanism of the formation of breast muscle quality and flavor differences between DM and CB chickens, and provide a reference for the development, utilization and genetic breeding of high-quality meat chicken breeds.PMID:38909504 | DOI:10.1016/j.psj.2024.103920
Untargeted metabolomics unravels distinct gut microbial metabolites derived from plant-based and animal-origin proteins using in vitro modeling
Food Chem. 2024 Jun 21;457:140161. doi: 10.1016/j.foodchem.2024.140161. Online ahead of print.ABSTRACTThe popularity of plant-based meat alternatives (PBMAs) has sparked a contentious debate about their influence on intestinal homeostasis compared to traditional animal-based meats. This study aims to explore the changes in gut microbial metabolites (GMMs) induced by the gut microbiota on different digested patties: beef meat and pea-protein PBMA. After digesting in vitro, untargeted metabolomics revealed 32 annotated metabolites, such as carnitine and acylcarnitines correlated with beef meat, and 45 annotated metabolites, like triterpenoids and lignans, linked to our PBMA. Secondly, (un)targeted approaches highlighted differences in GMM patterns during colonic fermentations. Our findings underscore significant differences in amino acids and their derivatives. Beef protein fermentation resulted in higher production of methyl-histidine, gamma-glutamyl amino acids, indoles, isobutyric and isovaleric acids. In contrast, PBMAs exhibit a significant release of N-acyl amino acids and unique dipeptides, like phenylalanine-arginine. This research offers valuable insights into how PBMAs and animal-based proteins differently modulate intestinal microenvironments.PMID:38909452 | DOI:10.1016/j.foodchem.2024.140161
Metabolic and microbial mechanisms related to the effects of dietary wheat levels on intramuscular fat content in finishing pigs
Meat Sci. 2024 Jun 20;216:109574. doi: 10.1016/j.meatsci.2024.109574. Online ahead of print.ABSTRACTThe current study aimed to investigate the metabolic and microbial mechanisms behind the effects of dietary wheat levels on intramuscular fat (IMF) content in the psoas major muscle (PM) of finishing pigs. Thirty-six barrows were arbitrarily assigned to two groups and fed with diets containing 25% or 55% wheat. Enhancing dietary wheat levels led to low energy states, resulting in reduced IMF content. This coincided with reduced serum glucose and low-density lipoprotein cholesterol levels. The AMP-activated protein kinase α2/sirtuin 1/peroxisome proliferator-activated receptor-γ coactivator 1α pathway may be activated by high-wheat diets, causing downregulation of adipogenesis and lipogenesis genes, and upregulation of lipolysis and gluconeogenesis genes. High-wheat diets decreased relative abundance of Lactobacillus and Coprococcus, whereas increased SMB53 proportion, subsequently decreasing colonic propionate content. Microbial glycolysis/gluconeogenesis, d-glutamine and D-glutamate metabolism, flagellar assembly, and caprolactam degradation were linked to IMF content. Metabolomic analysis indicated that enhancing dietary wheat levels promoted the protein digestion and absorption and affected amino acids and lipid metabolism. Enhancing dietary wheat levels reduced serum glucose and colonic propionate content, coupled with strengthened amino acid metabolism, contributing to the low energy states. Furthermore, alterations in microbial composition and propionate resulted from high-wheat diets were associated with primary bile acid biosynthesis, arachidonic acid metabolism, steroid hormone biosynthesis, and biosynthesis of unsaturated fatty acids, as well as IMF content. Colonic microbiota played a role in reducing IMF content through modulating the propionate-mediated peroxisome proliferators-activated receptor signaling pathway. In conclusion, body energy and gut microbiota balance collectively influenced lipid metabolism.PMID:38909450 | DOI:10.1016/j.meatsci.2024.109574
The rheumatoid arthritis drug auranofin exerts potent anti-lymphoma effect by stimulating TXNRD-mediated ROS generation and inhibition of energy metabolism
Redox Biol. 2024 Jun 18;75:103245. doi: 10.1016/j.redox.2024.103245. Online ahead of print.ABSTRACTSince the survival of lymphoma patients who experience disease progression or relapse remains very poor, new therapeutic approaches and effective drugs are urgently needed. Here we show that auranofin (AF), an anti-rheumatoid drug thought to inhibit thioredoxin reductases (TXNRDs) as its mechanism of action, exhibited potent activity against multiple cancer types, especially effective against B cell lymphoma. Surprisingly, a knockdown of TXNRD1 and TXNRD2 did not cause significant cytotoxicity, suggesting that abrogation of TXNRD enzyme per se was insufficient to cause cancer cell death. Further mechanistic study showed that the interaction of AF with TXNRD could convert this antioxidant enzyme to a ROS-generating molecule via disrupting its electron transport, leading to a leak of electrons that interact with molecular oxygen to form superoxide. AF also suppressed energy metabolism by inhibiting both mitochondria complex II and the glycolytic enzyme GAPDH, leading to a significant depletion of ATP and inhibition of cancer growth in vitro and in vivo. Importantly, we found that the AF-mediated ROS stress could induce PD-L1 expression, revealing an unwanted effect of AF in causing immune suppression. We further showed that a combination of AF with anti-PD-1 antibody could enhance the anticancer activity in a syngeneic immune-competent mouse B-cell lymphoma model. Our study suggests that AF could be a potential drug for lymphoma treatment, and its combination with immune checkpoint inhibitors would be a logical strategy to increase the therapeutic activity.PMID:38909408 | DOI:10.1016/j.redox.2024.103245
Metabolic flexibility ensures proper neuronal network function in moderate neuroinflammation
Sci Rep. 2024 Jun 22;14(1):14405. doi: 10.1038/s41598-024-64872-1.ABSTRACTMicroglia, brain-resident macrophages, can acquire distinct functional phenotypes, which are supported by differential reprogramming of cell metabolism. These adaptations include remodeling in glycolytic and mitochondrial metabolic fluxes, potentially altering energy substrate availability at the tissue level. This phenomenon may be highly relevant in the brain, where metabolism must be precisely regulated to maintain appropriate neuronal excitability and synaptic transmission. Direct evidence that microglia can impact on neuronal energy metabolism has been widely lacking, however. Combining molecular profiling, electrophysiology, oxygen microsensor recordings and mathematical modeling, we investigated microglia-mediated disturbances in brain energetics during neuroinflammation. Our results suggest that proinflammatory microglia showing enhanced nitric oxide release and decreased CX3CR1 expression transiently increase the tissue lactate/glucose ratio that depends on transcriptional reprogramming in microglia, not in neurons. In this condition, neuronal network activity such as gamma oscillations (30-70 Hz) can be fueled by increased ATP production in mitochondria, which is reflected by elevated oxygen consumption. During dysregulated inflammation, high energy demand and low glucose availability can be boundary conditions for neuronal metabolic fitness as revealed by kinetic modeling of single neuron energetics. Collectively, these findings indicate that metabolic flexibility protects neuronal network function against alterations in local substrate availability during moderate neuroinflammation.PMID:38909138 | DOI:10.1038/s41598-024-64872-1
Succinate promotes pulmonary fibrosis through GPR91 and predicts death in idiopathic pulmonary fibrosis
Sci Rep. 2024 Jun 22;14(1):14376. doi: 10.1038/s41598-024-64844-5.ABSTRACTIdiopathic pulmonary fibrosis (IPF) is believed to be associated with a notable disruption of cellular energy metabolism. By detecting the changes of energy metabolites in the serum of patients with pulmonary fibrosis, we aimed to investigate the diagnostic and prognostic value of energy metabolites in IPF, and further elucidated the mechanism of their involvement in pulmonary fibrosis. Through metabolomics research, it was discovered that the TCA cycle intermediates changed dramatically in IPF patients. In another validation cohort of 55 patients with IPF compared to 19 healthy controls, it was found that succinate, an intermediate product of TCA cycle, has diagnostic and prognostic value in IPF. The cut-off levels of serum succinate were 98.36 μM for distinguishing IPF from healthy controls (sensitivity, 83.64%; specificity, 63.16%; likelihood ratio, 2.27, respectively). Moreover, a high serum succinate level was independently associated with higher rates of disease progression (OR 13.087, 95%CI (2.819-60.761)) and mortality (HR 3.418, 95% CI (1.308-8.927)). In addition, accumulation of succinate and increased expression of the succinate receptor GPR91 were found in both IPF patients and BLM mouse models of pulmonary fibrosis. Reducing succinate accumulation in BLM mice alleviated pulmonary fibrosis and 21d mortality, while exogenous administration of succinate can aggravate pulmonary fibrosis in BLM mice. Furthermore, GPR91 deficiency protected against lung fibrosis caused by BLM. In vitro, succinate promoted the activation of lung fibroblasts by activating ERK pathway through GPR91. In summary, succinate is a promising biomarker for diagnosis and prognosis of IPF. The accumulation of succinate may promote fibroblast activation through GPR91 and pulmonary fibrosis.PMID:38909094 | DOI:10.1038/s41598-024-64844-5
An integrated strategy for quality control of Pseudobulbus Cremastrae seu Pleiones based on Q-marker
J Chromatogr A. 2024 Jun 17:465105. doi: 10.1016/j.chroma.2024.465105. Online ahead of print.ABSTRACTPseudobulbus Cremastrae seu Pleiones (PCsP), a traditional Chinese medicine known as ‶Shan-Ci-Gu″, possesses properties for clearing heat, counteracting toxicity, dissipating phlegm, and resolving masses. As a TCM with multiple bases, the dried pseudobulbs of Pleione bulbocodioides (PB), Pleione yunnanensis (PY) and Cremastra appendiculata (CA) are considered to be the official sources of PCsP. Additionally, several unofficial substitutes are also available in the market. To enhance the quality control of PCsP, an integrated strategy based on Q-marker was proposed. Initially, a study of integrating plant metabolomics, target isolation, structure identification, and activity testing afforded five Q-markers, including three new compounds. Furthermore, a quality evaluation method using a single standard to determine multi-components (SSDMC) based on Q-marker was established, which could effectively distinguish PB from CA and the counterfeit herbs. Finally, the transitivity of Q-markers was explored through a representative Chinese compound prescription containing PCsP. The results indicated that the identified Q-markers together with the established analysis methods could be effectively applied for quality control of PCsP and its preparations.PMID:38908999 | DOI:10.1016/j.chroma.2024.465105
Metabolic Engineering of CHO Cells Towards Cysteine Prototrophy and Systems Analysis of The Ensuing Phenotype
Metab Eng. 2024 Jun 20:S1096-7176(24)00076-4. doi: 10.1016/j.ymben.2024.06.003. Online ahead of print.ABSTRACTChinese hamster ovary (CHO) cells require cysteine for growth and productivity in fed-batch cultures. In intensified processes, supplementation of cysteine at high concentrations is a challenge due to its limited solubility and instability in solution. Methionine can be converted to cysteine (CYS) but key enzymes, cystathionine beta-synthase (Cbs) and cystathionine gamma-lyase (Cth), are not active in CHO cells resulting in accumulation of an intermediate, homocysteine (HCY), in cell culture milieu. In this study, Cbs and Cth were overexpressed in CHO cells to confer cysteine prototrophy, i.e., the ability to grow in a cysteine free environment. These pools (CbCt) needed homocysteine and beta-mercaptoethanol (βME) to grow in CYS-free medium. To increase intracellular homocysteine levels, Gnmt was overexpressed in CbCt pools. The resultant cell pools (GnCbCt), post adaptation in CYS-free medium with decreasing residual HCY and βME levels, were able to proliferate in the HCY-free, βME-free and CYS-free environment. Interestingly, CbCt pools were also able to be adapted to grow in HCY-free and CYS-free conditions, albeit at significantly higher doubling times than GnCbCt cells, but couldn't completely adapt to βME-free conditions. Further, single cell clones derived from the GnCbCt cell pool had a wide range in expression levels of Cbs, Cth and Gnmt and, when cultivated in CYS-free fed-batch conditions, performed similarly to the wild type (WT) cell line cultivated in CYS supplemented fed-batch culture. Intracellular metabolomic analysis showed that HCY and glutathione (GSH) levels were lower in the CbCt pool in CYS-free conditions but were restored closer to WT levels in the GnCbCt cells cultivated in CYS-free conditions. Transcriptomic analysis showed that GnCbCt cells upregulated several genes encoding transporters as well as methionine catabolism and transsulfuration pathway enzymes that support these cells to biosynthesize cysteine effectively. Further, 'omics analysis suggested CbCt pool was under ferroptotic stress in CYS-free conditions, which, when inhibited, enhanced the growth and viability of these cells in CYS-free conditions.PMID:38908817 | DOI:10.1016/j.ymben.2024.06.003
Bisphenol S Exposure induces Intestinal Inflammation via altering Gut Microbiome
Food Chem Toxicol. 2024 Jun 20:114830. doi: 10.1016/j.fct.2024.114830. Online ahead of print.ABSTRACTBisphenol S (BPS), a substitute for bisphenol A, is widely used in the manufacture of food packaging materials, raising concern over its toxicity. However, evidence is still lacking on whether gut microbiota involved in BPS induced intestinal inflammation in mammals, as well as its underlying mechanism. Using mouse BPS exposure model, we found intestinal inflammation characterized by shortened colon length, crypt distortion, macrophage accumulation and increased apoptosis. As for gut microbiota, 16s rRNA gene amplicon sequencing showed BPS exposure induced gut dysbiosis, including increased pro-inflammatory microbes such as Ileibacterium, and decreased anti-inflammatory genera such as Lactobacillus, Blautia and Romboutsia. Besides, LC-MS/MS-based untargeted metabolomic analysis indicated BPS impaired both bacteria and host metabolism. Additionally, transcriptome analysis of the intestine revealed abnormal gene expression in intestinal mucosal barrier and inflammation. More importantly, treating mice with antibiotics significantly attenuated BPS-induced gut inflammation via the regulation of both bacterial and host metabolites, indicating the role of gut microbiota. Collectively, BPS exposure induces intestinal inflammation via altering gut microbiota in mouse. This study provides the possibility of madecassic acid, an anti-inflammatory metabolite, to prevent BPS-induced intestinal inflammation and also new insights in understanding host-microbiota interaction in BPS toxicity.PMID:38908815 | DOI:10.1016/j.fct.2024.114830
Autophagic signaling promotes systems-wide remodeling in skeletal muscle upon oncometabolic stress by D2-HG
Mol Metab. 2024 Jun 20:101969. doi: 10.1016/j.molmet.2024.101969. Online ahead of print.ABSTRACTOBJECTIVES: Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG). Increased production of D2-HG is associated with heart and skeletal muscle atrophy, but the mechanistic links between metabolic and proteomic remodeling remain poorly understood. Therefore, we assessed how oncometabolic stress by D2-HG activates autophagy and drives skeletal muscle loss.METHODS: We quantified genomic, metabolomic, and proteomic changes in cultured skeletal muscle cells and mouse models of IDH-mutant leukemia using RNA sequencing, mass spectrometry, and computational modeling.RESULTS: D2-HG impairs NADH redox homeostasis in myotubes. Increased NAD+ levels drive activation of nuclear deacetylase Sirt1, which causes deacetylation and activation of LC3, a key regulator of autophagy. Using LC3 mutants, we confirm that deacetylation of LC3 by Sirt1 shifts its distribution from the nucleus into the cytosol, where it can undergo lipidation at pre-autophagic membranes. Sirt1 silencing or p300 overexpression attenuated autophagy activation in myotubes. In vivo, we identified increased muscle atrophy and reduced grip strength in response to D2-HG in male vs. female mice. In male mice, glycolytic intermediates accumulated, and protein expression of oxidative phosphorylation machinery was reduced. In contrast, female animals upregulated the same proteins, attenuating the phenotype in vivo. Network modeling and machine learning algorithms allowed us to identify candidate proteins essential for regulating oncometabolic adaptation in mouse skeletal muscle.CONCLUSIONS: Our multi-omics approach exposes new metabolic vulnerabilities in response to D2-HG in skeletal muscle and provides a conceptual framework for identifying therapeutic targets in cachexia.PMID:38908793 | DOI:10.1016/j.molmet.2024.101969
Altered bile acid and correlations with gut microbiome in transition dairy cows with different glucose and lipid metabolism status
J Dairy Sci. 2024 Jun 20:S0022-0302(24)00959-7. doi: 10.3168/jds.2024-24658. Online ahead of print.ABSTRACTThe transition from pregnancy to lactation is critical in dairy cows. Among others, dairy cows experience a metabolic stress due to a large change in glucose and lipid metabolism. Recent studies revealed that bile acids (BA), besides being involved in both the emulsification and solubilization of fats during intestinal absorption, can also affect the metabolism of glucose and lipids, both directly or indirectly by affecting the gut microbiota. Thus, we used untargeted and targeted metabolomics and 16S rRNA sequencing approaches to investigate the concentration of plasma metabolites and BA, the composition of the rectum microbial community, and assess their interaction in transition dairy cows. In Experiment 1, we investigated BA and other blood parameters and gut microbiota in dairy cows without clinical diseases during the transition period, which can be seen as well adapted to the challenge of changed glucose and lipid metabolism. As expected, we detected an increased plasma concentration of β-hydroxybutyrate (BHBA) and nonesterified fatty acids (NEFA) but decreased concentration of glucose, cholesterol, and triglycerides (TG). Untargeted metabolomic analysis of the plasma revealed primary BA biosynthesis was one of the affected pathways, and was consistent with the increased concentration of BA in the plasma. A correlation approach revealed a complex association between BA and microbiota with the host plasma concentration of glucose and lipid metabolites. Among BA, chenodeoxycholic acid derivates such as glycolithocholic acid, taurolithocholic acid, lithocholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid were the main hub nodes connecting microbe and blood metabolites (such as glucose, TG, and NEFA). In Experiment 2, we investigated early postpartum dairy cows with or without hyperketonemia (HPK). As expected, HPK cows had increased concentration of NEFA and decreased concentrations of glucose and triglycerides. The untargeted metabolomic analysis of the plasma revealed that primary BA biosynthesis was also one of the affected pathways. Even though the BA concentration was similar among the 2 groups, the profiles of taurine conjugated BA changed significantly. A correlation analysis also revealed an association between BA and microbiota with the concentration in plasma of glucose and lipid metabolites (such as BHBA). Among BA, cholic acid and its derivates such as taurocholic acid, tauro α-muricholic acid, and taurodeoxycholic acid were the main hub nodes connecting microbe and blood metabolites. Our results indicated an association between BA, intestinal microbe, and glucose and lipid metabolism in transition dairy cows. These findings provide new insight into the adaptation mechanisms of dairy cows during the transition period.PMID:38908707 | DOI:10.3168/jds.2024-24658