PubMed
Plasma sphingolipids mediate the association between gut microbiome composition and type 2 diabetes risk in the HELIUS cohort: a case-cohort study
BMJ Open Diabetes Res Care. 2024 Jul 18;12(4):e004180. doi: 10.1136/bmjdrc-2024-004180.ABSTRACTINTRODUCTION: The association between the gut microbiome and incident type 2 diabetes (T2D) is potentially partly mediated through sphingolipids, however these possible mediating mechanisms have not been investigated. We examined whether sphingolipids mediate the association between gut microbiome and T2D, using data from the Healthy Life in an Urban Setting study.RESEARCH DESIGN AND METHODS: Participants were of Dutch or South-Asian Surinamese ethnicity, aged 18-70 years, and without T2D at baseline. A case-cohort design (subcohort n=176, cases incident T2D n=36) was used. The exposure was measured by 16S rRNA sequencing (gut microbiome) and mediator by targeted metabolomics (sphingolipids). Dimensionality reduction was achieved by principle component analysis and Shannon diversity. Cox regression and procrustes analyses were used to assess the association between gut microbiome and T2D and sphingolipids and T2D, and between gut microbiome and sphingolipids, respectively. Mediation was tested familywise using mediation analysis with permutation testing and Bonferroni correction.RESULTS: Our study confirmed associations between gut microbiome and T2D and sphingolipids and T2D. Additionally, we showed that the gut microbiome was associated with sphingolipids. The association between gut microbiome and T2D was partly mediated by a sphingolipid principal component, which represents a dominance of ceramide species over more complex sphingolipids (HR 1.17; 95% CI 1.08 to 1.28; proportional explained 48%), and by Shannon diversity (HR 0.97; 95% CI 0.95 to 0.99; proportional explained 24.8%).CONCLUSIONS: These data suggest that sphingolipids mediate the association between microbiome and T2D risk. Future research is needed to confirm observed findings and elucidate causality on a molecular level.PMID:39025794 | DOI:10.1136/bmjdrc-2024-004180
Effects of insonification on repairing the renal injury of diabetic nephropathy rats
BMJ Open Diabetes Res Care. 2024 Jul 18;12(4):e004146. doi: 10.1136/bmjdrc-2024-004146.ABSTRACTINTRODUCTION: Prolonged hyperglycemia in diabetes mellitus can result in the development of diabetic nephropathy (DN) and increase the susceptibility to kidney failure. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive modality that has demonstrated effective tissue repair capabilities. The objective of this study was to showcase the reparative potential of LIPUS on renal injury at both animal and cellular levels, while also determining the optimal pulse length (PL).RESEARCH DESIGN AND METHODS: We established a rat model of DN, and subsequently subjected the rats' kidneys to ultrasound irradiation (PL=0.2 ms, 10 ms, 20 ms). Subsequently, we assessed the structural and functional changes in the kidneys. Additionally, we induced podocyte apoptosis and evaluated its occurrence following ultrasound irradiation.RESULTS: Following irradiation, DN rats exhibited improved mesangial expansion and basement membrane thickening. Uric acid expression increased while urinary microalbumin, podocalyxin in urine, blood urea nitrogen, and serum creatinine levels decreased (p<0.05). These results suggest that the optimal PL was 0.2 ms. Using the optimal PL further demonstrated the reparative effect of LIPUS on DN, it was found that LIPUS could reduce podococyte apoptosis and alleviate kidney injury. Metabolomics revealed differences in metabolites including octanoic acid and seven others and western blot results showed a significant decrease in key enzymes related to lipolysis (p<0.05). Additionally, after irradiating podocytes with different PLs, we observed suppressed apoptosis (p<0.05), confirming the optimal PL as 0.2 ms.CONCLUSIONS: LIPUS has been demonstrated to effectively restore renal structure and function in DN rats, with an optimal PL of 0.2 ms. The mechanism underlying the alleviation of DN by LIPUS is attributed to its ability to improve lipid metabolism disorder. These findings suggest that LIPUS may provide a novel perspective for future research in this field.PMID:39025793 | DOI:10.1136/bmjdrc-2024-004146
Chronic Exposure to Petroleum-Derived Hydrocarbons Alters Human Skin Microbiome and Metabolome Profiles: A Pilot Study
J Proteome Res. 2024 Jul 18. doi: 10.1021/acs.jproteome.4c00256. Online ahead of print.ABSTRACTPetroleum-derived substances, like industrial oils and grease, are ubiquitous in our daily lives. Comprised of petroleum hydrocarbons (PH), these substances can come into contact with our skin, potentially causing molecular disruptions and contributing to the development of chronic disease. In this pilot study, we employed mass spectrometry-based untargeted metabolomics and 16S rRNA gene sequencing analyses to explore these effects. Superficial skin samples were collected from subjects with and without chronic dermal exposure to PH at two anatomical sites: the fingers (referred to as the hand) and arms (serving as an intersubject variability control). Exposed hands exhibited higher bacterial diversity (Shannon and Simpson indices) and an enrichment of oil-degrading bacteria (ODB), including Dietzia, Paracoccus, and Kocuria. Functional prediction suggested enriched pathways associated with PH degradation in exposed hands vs non-exposed hands, while no differences were observed when comparing the arms. Furthermore, carboxylic acids, glycerophospholipids, organooxygen compounds, phenol ethers, among others, were found to be more abundant in exposed hands. We observed positive correlations among multiple ODB and xenobiotics, suggesting a chemical remodeling of the skin favorable for ODB thriving. Overall, our study offers insights into the complex dysregulation of bacterial communities and the chemical milieu induced by chronic dermal exposure to PH.PMID:39024464 | DOI:10.1021/acs.jproteome.4c00256
Taurine Alleviates Ferroptosis-Induced Metabolic Impairments in C2C12 Myoblasts by Stabilizing the Labile Iron Pool and Improving Redox Homeostasis
J Proteome Res. 2024 Jul 18. doi: 10.1021/acs.jproteome.4c00123. Online ahead of print.ABSTRACTFerroptosis adversely affects the viability, differentiation, and metabolic integrity of C2C12 myoblasts, contributing to the decline in skeletal muscle health. The intricate mechanisms behind this process are not fully understood. In this study, we induced ferroptosis in myoblasts using targeted inducers and found a marked decrease in specific redox metabolites, particularly taurine. Taurine supplementation effectively reversed the deleterious effects of ferroptosis, significantly increased cellular glutathione levels, reduced MDA and ROS levels, and rejuvenated impaired myogenic differentiation. Furthermore, taurine downregulated HO-1 expression and decreased intracellular Fe2+ levels, thereby stabilizing the labile iron pool. Using NMR metabolomic analysis, we observed that taurine profoundly promoted glycerophospholipid metabolism, which is critical for cell membrane repair, and enhanced mitochondrial bioenergetics, thereby increasing the energy reserves essential for muscle satellite cell regeneration. These results suggest that taurine is a potent ferroptosis inhibitor that attenuates key drivers of this process, strengthens oxidative defenses, and improves redox homeostasis. This combined effect protects cells from ferroptosis-induced damage. This study highlights the potential of taurine as a valuable ferroptosis inhibitor that protects skeletal muscle from ferroptosis-induced damage and provides a basis for therapeutic strategies to rejuvenate and facilitate the regeneration of aging skeletal muscle.PMID:39024330 | DOI:10.1021/acs.jproteome.4c00123
Modeling of culture conditions by culture system, glucose and propionic acid and their impact on metabolic profile in IPEC-J2
PLoS One. 2024 Jul 18;19(7):e0307411. doi: 10.1371/journal.pone.0307411. eCollection 2024.ABSTRACTThe microbiological environment and their corresponding secreted metabolite spectrum are an essential modulator of the enterocyte function, effecting the whole organism. Intestinal porcine jejunal epithelial cell line (IPEC-J2) is an established in vitro model for differentiation of enterocytes in different cell culture models. An improved oxygen supply seems to be the main reason for differentiation in an air-liquid-interface culture, but this has not yet been conclusively clarified. In this context, the nutrition of the cell and its influence on the metabolism is also of crucial importance. The interest in short-chain fatty acids (SCFAs) has grown steadily in recent years due to their clinical relevance in certain diseases such as multiple sclerosis and other inflammatory diseases, but not much is known of FFAR2 and FFAR3 (free fatty acid receptor 2 and 3) in pigs. We want to address the questions: 1. about the distribution of FFAR2 and FFAR3 in vivo and in vitro in sus scrofa 2. whether there is an influence of propionic acid, glucose content and cultivation on metabolism of enterocytes? The morphological analysis of FFAR2 and FFAR3 in vivo was investigated through immunostaining of frozen sections of the porcine gut segments jejunum, ileum and colon. Both receptors are expressed along the gut and were found in the smooth muscle cells of the tunica muscularis and lamina muscularis mucosae. Furthermore, a high expression of FFAR2 and a low expression of FFAR3 in the enteric nerve system was also observed in jejunum, ileum and colon of sus scrofa. In addition, FFAR2 and FFAR3 within the vessels was investigated. FFAR3 showed a strong expression on endothelial cells of veins and lymphatic vessels but was not detectable on arteries. Furthermore, we demonstrate for the first time, FFAR2 and FFAR3 in IPEC-J2 cells on RNA- and protein level, as well as with confocal microscopy. In addition, ENO1 and NDUFA4 were investigated on RNA-level in IPEC-J2 cells as 2 important genes, which play an essential role in metabolism. Here, NDUFA4 is detected in the model animal sus scrofa as well as in the porcine cell line IPEC-J2. A potential impact of propionic acid and/or glucose and/or cultivation method on the metabolism of the cells was tested with the Seahorse analyzer. Here, a significant higher ECAR was observed in the SMC than in the OCR. In summary, we were able to show that the cultivation system appears to have a greater influence than the medium composition or nutrition of the cells. However, this can be modulated by incubation time or combination of different SCFAs.PMID:39024309 | DOI:10.1371/journal.pone.0307411
Using a multi-omics approach to explore potential associations with rumen content and serum of cows with different milk production levels based on genomic predicted transmitting ability for milk and phenotypic milk production
PLoS One. 2024 Jul 18;19(7):e0305674. doi: 10.1371/journal.pone.0305674. eCollection 2024.ABSTRACTThis study aims to compare rumen microbiome and metabolites between second lactation dairy cows in the 75th percentile (n = 12; 57.2 ± 5.08 kg/d) of production according to genomic predicted transmitting ability for milk (GPTAM) and their counterparts in the 25th percentile (n = 12; 47.2 ± 8.61 kg/d). It was hypothesized that the metagenome and metabolome would differ between production levels. Cows were matched by days in milk (DIM), sire, occurrence of disease, and days open in previous lactation. For an additional comparison, the cows were also divided by phenotype into high (n = 6; 61.3 ± 2.8 kg/d), medium (n = 10; 55 ± 1.2 kg/d), and low (n = 8; 41.9 ± 5.6 kg/d) based on their milk production. Samples were collected 65 ± 14 DIM. Rumen content was collected using an oro-gastric tube and serum samples were collected from the coccygeal vessels. High-resolution liquid chromatography-mass spectrometry (LC-MS) was used for rumen and serum metabolite profiling. Shotgun metagenomics was used for rumen microbiome profiling. Microbiome sample richness and diversity were used to determine alpha and Bray-Curtis dissimilarity index was used to estimate beta diversity. Differences in metabolites were determined using t-tests or ANOVA. Pearson correlations were used to consider associations between serum metabolites and milk production. There was no evidence of a difference in rumen metabolites or microbial communities by GPTAM or phenotype. Cows in the phenotypic low group had greater serum acetate to propionate ratio and acetate proportion compared to the cows in the phenotypic medium group. Likewise, serum propionate proportion was greater in the medium compared to the low phenotypic group. Serum acetate, butyrate, and propionate concentrations had a weak positive correlation with milk production. When investigating associations between rumen environment and milk production, future studies must consider the impact of the ruminal epithelium absorption and post-absorption processes in relation to milk production.PMID:39024228 | DOI:10.1371/journal.pone.0305674
Decoding host cell interaction- and fluconazole-induced metabolic alterations and drug resistance in <em>Candida auris</em>
Mycologia. 2024 Jul 18:1-21. doi: 10.1080/00275514.2024.2363730. Online ahead of print.ABSTRACTCandida auris is an emerging drug-resistant pathogen associated with high mortality rates. This study aimed to explore the metabolic alterations and associated pathogenesis and drug resistance in fluconazole-treated Candida auris-host cell interaction. Compared with controls, secreted metabolites from fluconazole-treated C. auris and fluconazole-treated C. auris-host cell co-culture demonstrated notable anti-Candida activity. Fluconazole caused significant reductions in C. auris cell numbers and aggregated phenotype. Metabolites produced by C. auris with potential fungal colonization, invasion, and host immune evasion effects were identified. Metabolites known to enhance biofilm formation produced during C. auris-host cell interaction were inhibited by fluconazole. Fluconazole enhanced the production of metabolites with biofilm inhibition activity, including behenyl alcohol and decanoic acid. Metabolites with potential Candida growth inhibition activity such as 2-palmitoyl glycerol, 1-tetradecanol, and 1-nonadecene were activated by fluconazole. Different patterns of proinflammatory cytokine expression presented due to fluconazole concentration and host cell type (fibroblasts versus macrophages). This highlights the immune response's complexity, emphasizing the necessity for additional research to comprehend cell-type-specific responses to antifungal therapies. Both host cell interaction and fluconazole treatment increased the expression of CDR1 and ERG11 genes, both associated with drug resistance. This study provides insights into pathogenesis in C. auris due to host cell interaction and fluconazole treatment. Understanding these interactions is crucial for enhancing fluconazole sensitivity and effectively combating C. auris.PMID:39024116 | DOI:10.1080/00275514.2024.2363730
Disrupted H<sub>2</sub> synthesis combined with methyl viologen treatment inhibits photosynthetic electron flow to synergistically enhance glycogen accumulation in the cyanobacterium Synechocystis sp. PCC 6803
Plant Mol Biol. 2024 Jul 18;114(4):87. doi: 10.1007/s11103-024-01484-3.ABSTRACTUnder nitrogen deprivation (-N), cyanobacterium Synechocystis sp. PCC 6803 exhibits growth arrest, reduced protein content, and remarkably increased glycogen accumulation. However, producing glycogen under this condition requires a two-step process with cell transfer from normal to -N medium. Metabolic engineering and chemical treatment for rapid glycogen accumulation can bypass the need for two-step cultivation. For example, recent studies indicate that individually disrupting hydrogen (H2) or poly(3-hydroxybutyrate) (PHB) synthesis, or treatment with methyl viologen (MV), effectively increases glycogen accumulation in Synechocystis. Here we explore the effects of disrupted H2 or poly(3-hydroxybutyrate) synthesis, together with MV treatment to on enhanced glycogen accumulation in Synechocystis grown in normal medium. Wild-type cells without MV treatment exhibited low glycogen content of less than 6% w/w dry weight (DW). Compared with wild type, disrupting PHB synthesis combined with MV treatment did not increase glycogen content. Disrupted H₂ production without MV treatment yielded up to 11% w/w DW glycogen content. Interestingly, when combined, disrupted H2 production with MV treatment synergistically enhanced glycogen accumulation to 51% and 59% w/w DW within 3 and 7 days, respectively. Metabolomic analysis suggests that MV treatment mediated the conversion of proteins into glycogen. Metabolomic and transcriptional-expression analysis suggests that disrupted H2 synthesis under MV treatment positively influenced glycogen synthesis. Disrupted H₂ synthesis under MV treatment significantly increased NADPH levels. This increased NADPH content potentially contributed to the observed enhancements in antioxidant activity against MV-induced oxidants, O2 evolution, and metabolite substrates levels for glycogen synthesis in normal medium, ultimately leading to enhanced glycogen accumulation in Synechocystis. KEY MESSAGE: Combining disrupted hydrogen-gas synthesis and the treatment by photosynthesis electron-transport inhibitor significantly enhance glycogen production in cyanobacteria.PMID:39023834 | DOI:10.1007/s11103-024-01484-3
Evaluation of the <em>Leishmania</em> Inositol Phosphorylceramide Synthase as a Drug Target Using a Chemical and Genetic Approach
ACS Infect Dis. 2024 Jul 18. doi: 10.1021/acsinfecdis.4c00284. Online ahead of print.ABSTRACTThe lack of effective vaccines and the development of resistance to the current treatments highlight the urgent need for new anti-leishmanials. Sphingolipid metabolism has been proposed as a promising source of Leishmania-specific targets as these lipids are key structural components of the eukaryotic plasma membrane and are involved in distinct cellular events. Inositol phosphorylceramide (IPC) is the primary sphingolipid in the Leishmania species and is the product of a reaction mediated by IPC synthase (IPCS). The antihistamine clemastine fumarate has been identified as an inhibitor of IPCS in L. major and a potent anti-leishmanial in vivo. Here we sought to further examine the target of this compound in the more tractable species L. mexicana, using an approach combining genomic, proteomic, metabolomic and lipidomic technologies, with molecular and biochemical studies. While the data demonstrated that the response to clemastine fumarate was largely conserved, unexpected disturbances beyond sphingolipid metabolism were identified. Furthermore, while deletion of the gene encoding LmxIPCS had little impact in vitro, it did influence clemastine fumarate efficacy and, importantly, in vivo pathogenicity. Together, these data demonstrate that clemastine does inhibit LmxIPCS and cause associated metabolic disturbances, but its primary target may lie elsewhere.PMID:39023360 | DOI:10.1021/acsinfecdis.4c00284
Integrative <em>in vivo</em> analysis of the ethanolamine utilization bacterial microcompartment in <em>Escherichia coli</em>
mSystems. 2024 Jul 18:e0075024. doi: 10.1128/msystems.00750-24. Online ahead of print.ABSTRACTBacterial microcompartments (BMCs) are self-assembling protein megacomplexes that encapsulate metabolic pathways. Although approximately 20% of sequenced bacterial genomes contain operons encoding putative BMCs, few have been thoroughly characterized, nor any in the most studied Escherichia coli strains. We used an interdisciplinary approach to gain deep molecular and functional insights into the ethanolamine utilization (Eut) BMC system encoded by the eut operon in E. coli K-12. The eut genotype was linked with the ethanolamine utilization phenotype using deletion and overexpression mutants. The subcellular dynamics and morphology of the E. coli Eut BMCs were characterized in cellula by fluorescence microscopy and electron (cryo)microscopy. The minimal proteome reorganization required for ethanolamine utilization and the in vivo stoichiometric composition of the Eut BMC were determined by quantitative proteomics. Finally, the first flux map connecting the Eut BMC with central metabolism in cellula was obtained by genome-scale modeling and 13C-fluxomics. Our results reveal that contrary to previous suggestions, ethanolamine serves both as a nitrogen and a carbon source in E. coli K-12, while also contributing to significant metabolic overflow. Overall, this study provides a quantitative molecular and functional understanding of the BMCs involved in ethanolamine assimilation by E. coli.IMPORTANCEThe properties of bacterial microcompartments make them an ideal tool for building orthogonal network structures with minimal interactions with native metabolic and regulatory networks. However, this requires an understanding of how BMCs work natively. In this study, we combined genetic manipulation, multi-omics, modeling, and microscopy to address this issue for Eut BMCs. We show that the Eut BMC in Escherichia coli turns ethanolamine into usable carbon and nitrogen substrates to sustain growth. These results improve our understanding of compartmentalization in a widely used bacterial chassis.PMID:39023255 | DOI:10.1128/msystems.00750-24
Cold tolerance of woodland strawberry (Fragaria vesca) is linked to Cold Box Factor 4 and the dehydrin Xero2
J Exp Bot. 2024 Jul 18:erae263. doi: 10.1093/jxb/erae263. Online ahead of print.ABSTRACTDomesticated strawberry is susceptible to sudden frost episodes, limiting the productivity of this cash crop in regions, where they are grown during early spring. In contrast, the ancestral woodland strawberry (Fragaria vesca) has successfully colonised many habitats of the Northern Hemisphere. Thus, this species seems to harbour genetic factors promoting cold tolerance. Screening a germplasm established in frame of the German Gene Bank for Crop Wild Relatives we identified, among 70 wild accessions, a pair contrasting with respect to cold tolerance. By following the physiological, biochemical, molecular, and metabolic responses of this contrasting pair, we identified the transcription factor Cold Box Factor 4 and the dehydrin Xero-2 as molecular markers associated with superior tolerance to cold stress. Overexpression of GFP fusions with Xero-2 in tobacco BY-2 cells conferred cold tolerance to these recipient cells. A detailed analysis of the metabolome for the two contrasting genotypes allows to define metabolic signatures correlated with cold tolerance versus cold stress. This work provides a proof-of-concept for the value of crop wild relatives as genetic resources to identify genetic factors suitable to increase the stress resilience of crop plants.PMID:39023232 | DOI:10.1093/jxb/erae263
Metagenomic analysis of the gut virome in patients with irritable bowel syndrome
J Med Virol. 2024 Jul;96(7):e29802. doi: 10.1002/jmv.29802.ABSTRACTIrritable bowel syndrome (IBS), a chronic functional gastrointestinal disorder, is recognized for its association with alterations in the gut microbiome and metabolome. This study delves into the largely unexplored domain of the gut virome in IBS patients. We conducted a comprehensive analysis of the fecal metagenomic data set from 277 IBS patients and 84 healthy controls to characterize the gut viral community. Our findings revealed a distinct gut virome in IBS patients compared to healthy individuals, marked by significant variances in between-sample diversity and altered abundances of 127 viral operational taxonomic units (vOTUs). Specifically, 111 vOTUs, predominantly belonging to crAss-like, Siphoviridae, Myoviridae, and Quimbyviridae families, were more abundant in IBS patients, whereas the healthy control group exhibited enrichment of 16 vOTUs from multiple families. We also investigated the interplay between the gut virome and bacteriome, identifying a correlation between IBS-enriched bacteria like Klebsiella pneumoniae, Fusobacterium varium, and Ruminococcus gnavus, and the IBS-associated vOTUs. Furthermore, we assessed the potential of gut viral signatures in predicting IBS, achieving a notable area under the receiver operator characteristic curve (AUC) of 0.834. These findings highlight significant shifts in the viral diversity, taxonomic distribution, and functional composition of the gut virome in IBS patients, suggesting the potential role of the gut virome in IBS pathogenesis and opening new avenues for diagnostic and therapeutic strategies targeting the gut virome in IBS management.PMID:39023095 | DOI:10.1002/jmv.29802
Saliva, Plasma, and Multifluid Metabolomic Signatures of Periodontal Disease, Type 2 Diabetes Progression, and Markers of Glycemia and Dyslipidemia Among Puerto Rican Adults With Overweight and Obesity
J Am Heart Assoc. 2024 Jul 18:e033350. doi: 10.1161/JAHA.123.033350. Online ahead of print.ABSTRACTBACKGROUND: Evidence from cohort studies indicates a bidirectional relationship between periodontal disease and type 2 diabetes (T2D), but the underlying mechanisms remain unknown. In this study, we aimed to (1) identify saliva, plasma, and multifluid metabolomic signatures associated with periodontal disease and (2) determine if these signatures predict T2D progression and cardiometabolic biomarkers at year 3.METHODS AND RESULTS: We included participants from the SOALS (San Juan Overweight Adult Longitudinal Study) (n=911). Metabolites from saliva (k=635) and plasma (k=1051) were quantified using liquid chromatography-mass spectrometry. We applied elastic net regression with 10-fold cross-validation to identify baseline metabolomic signatures of periodontal disease. Multivariable Cox proportional hazards regression and linear regression were used to evaluate the association with T2D progression and biomarker concentrations. Metabolomic profiles included highly weighted metabolites related to lysine and pyrimidine metabolism. Periodontal disease or its 3 metabolomic signatures were not associated with T2D progression in 3 years. Prospectively, 1-SD increments in the multifluid and saliva metabolomic signatures were associated with higher low-density lipoprotein (multifluid: 12.9±5.70, P=0.02; saliva: 13.3±5.11, P=0.009). A 1-SD increment in the plasma metabolomic signature was also associated with Homeostatic Model Assessment for Insulin Resistance (2.67±1.14, P=0.02) and triglyceride (0.52±0.18, P=0.002).CONCLUSIONS: Although metabolomic signatures of periodontal disease could not predict T2D progression, they were associated with low-density lipoprotein, triglyceride, and Homeostatic Model Assessment for Insulin Resistance levels at year 3.PMID:39023061 | DOI:10.1161/JAHA.123.033350
Increased hepatic putrescine levels as a new potential factor related to the progression of metabolic dysfunction-associated steatotic liver disease
J Pathol. 2024 Jul 18. doi: 10.1002/path.6330. Online ahead of print.ABSTRACTMetabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver condition that often progresses to more advanced stages, such as metabolic dysfunction-associated steatohepatitis (MASH). MASH is characterized by inflammation and hepatocellular ballooning, in addition to hepatic steatosis. Despite the relatively high incidence of MASH in the population and its potential detrimental effects on human health, this liver disease is still not fully understood from a pathophysiological perspective. Deregulation of polyamine levels has been detected in various pathological conditions, including neurodegenerative diseases, inflammation, and cancer. However, the role of the polyamine pathway in chronic liver disorders such as MASLD has not been explored. In this study, we measured the expression of liver ornithine decarboxylase (ODC1), the rate-limiting enzyme responsible for the production of putrescine, and the hepatic levels of putrescine, in a preclinical model of MASH as well as in liver biopsies of patients with obesity undergoing bariatric surgery. Our findings reveal that expression of ODC1 and the levels of putrescine, but not spermidine nor spermine, are elevated in hepatic tissue of both diet-induced MASH mice and patients with biopsy-proven MASH compared with control mice and patients without MASH, respectively. Furthermore, we found that the levels of putrescine were positively associated with higher aspartate aminotransferase concentrations in serum and an increased SAF score (steatosis, activity, fibrosis). Additionally, in in vitro assays using human HepG2 cells, we demonstrate that elevated levels of putrescine exacerbate the cellular response to palmitic acid, leading to decreased cell viability and increased release of CK-18. Our results support an association between the expression of ODC1 and the progression of MASLD, which could have translational relevance in understanding the onset of this disease. © 2024 The Pathological Society of Great Britain and Ireland.PMID:39022853 | DOI:10.1002/path.6330
Structural characterization and screening of chemical markers of alkaloids in Aconiti lateralis radix Praeparata and its processed products by UHPLC/Q-TOF-MS/MS and GNPS combining multivariate statistical methods based on the clinic
Rapid Commun Mass Spectrom. 2024 Sep 30;38(18):e9857. doi: 10.1002/rcm.9857.ABSTRACTRATIONAL: Aconiti Lateralis Radix Praeparata (AC) is a traditional Chinese medicine with a long history of use. However, the current research on the material basis of AC and its processed products is still not comprehensive, especially the changes in lipo-diterpenoid alkaloids (LDAs) that can be hydrolyzed into diester-diterpenoid alkaloids in AC before and after processing. This study aimed to provide material basis guidance for the clinical use of AC and its processed products by comprehensively analyzing the changes in substances between AC and its processed products.METHODS: An ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS/MS) approach was optimized to chemical profiling. The MS data were processed using molecular networking combined with the in-house library database to fast characterize the compounds. Multivariate statistical methods were adopted to determine the dissimilarities of components in AC and its processed products.RESULTS: A total of 310 compounds were tentatively identified from AC, including 109 potential new alkaloids, of which 98 were potential novel LPAs. A metabolomics approach was applied to find the characteristic marker components. As a result, 52 potential chemical markers were selected to distinguish the AC samples of different extraction methods and 42 potential chemical markers for differentiating between AC and its processed products were selected.CONCLUSION: The results indicate that UHPLC/Q-TOF-MS/MS and Global Natural Products Social Molecular Networking coupled with multivariate analysis strategies was a powerful tool to rapidly identify and screen the chemical markers of alkaloids between the AC samples and its processed products. These results also indicate that the toxicity of water extracts of AC and its processed products were decreased. This research not only guides the clinical safe use of AC and its processed products, but also extends the application of the molecular networking strategy in traditional herbal medicine.PMID:39022839 | DOI:10.1002/rcm.9857
Comparative metabolomics of leaves and stems of three Italian olive cultivars under drought stress
Front Plant Sci. 2024 Jul 3;15:1408731. doi: 10.3389/fpls.2024.1408731. eCollection 2024.ABSTRACTThe Mediterranean will be one of the focal points of climate change. The predicted dry and hot summers will lead to water scarcity in agriculture, which may limit crop production and growth. The olive tree serves as a model woody plant for studying drought stress and improving water resource management; thus, it is critical to identify genotypes that are more drought tolerant and perform better under low irrigation or even rainfed conditions. In this study, the metabolomic approach was used to highlight variations in metabolites in stems and leaves of three Italian olive cultivars (previously characterized physiologically) under two and four weeks of drought stress. Phenolic and lipophilic profiles were obtained by gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-mass spectrometry, respectively. The findings identified the leaf as the primary organ in which phenolic variations occurred. The Maurino cultivar exhibited a strong stress response in the form of phenolic compound accumulation, most likely to counteract oxidative stress. The phenolic compound content of 'Giarraffa' and 'Leccino' plants remained relatively stable whether they were exposed to drought or not. Variations in the lipid profile occurred in leaves and stems of all the cultivars. A high accumulation of compounds related to epicuticular wax components was observed in the leaf of 'Giarraffa', while a strong reduction of lipids and long-chain alkanes occurred in 'Maurino' when exposed to drought stress conditions.PMID:39022609 | PMC:PMC11251969 | DOI:10.3389/fpls.2024.1408731
Comparative metabolomics and transcriptomics provide new insights into florpyrauxifen-benzyl resistance in Echinochloa glabrescens
Front Plant Sci. 2024 Jul 3;15:1392460. doi: 10.3389/fpls.2024.1392460. eCollection 2024.ABSTRACTEchinochloa glabrescens Munro ex Hook. f. is a weed of the genus Echinocloa (Echinocloa spp.) that occurs frequently in paddy fields, causing serious harm to rice production. Florpyrauxifen-benzyl (FPB) is a foliar-applied herbicide used to control Echinocloa spp. in paddy fields. However, in recent years, with the widespread use of FPB in rice production, FPB-resistant barnyard grasses have been reported. Here, we identified an FPB-resistant E. glabrescens population with a resistance index (RI) of 10.65 and conducted a comparative analysis using untargeted metabolomics and transcriptomics to investigate the differences between an FPB-resistant E. glabrescens population and a susceptible E. glabrescens population after treatment with the recommended field dose of FPB. Our results showed that the FPB-resistant E. glabrescens had 115 differentially accumulated metabolites (DAMs; 65 up-regulated and 50 down-regulated) and 6397 differentially expressed genes (DEGs; 65 up-regulated and 50 down-regulated) compared to the susceptible E. glabrescens. The analysis of DAMs and DEGs revealed that DAMs were significantly enriched in Glutathione metabolism, Arginine and proline metabolism, and Zeatin biosynthesis pathways, while DEGs were mainly enriched in carbon fixation in photosynthetic organisms, photosynthesis, cyanoamino acid metabolism and glutathione metabolism, etc. The glutathione metabolism pathway was found to be significantly enriched for both DEGs and DAMs. Within this pathway, the metabolites (spermine) and genes (GSTU8, GSTU18, GSTF1) may play a pivotal role in the resistance mechanism of FPB-resistant E. glabrescens. Furthermore, we demonstrated the presence of GST-mediated metabolic resistance in an FPB-resistant E. glabrescens population by using NBD-Cl. Overall, our study provides new insights into the underlying mechanisms of E. glabrescens resistance to FPB through a comparative analysis of untargeted metabolomics and transcriptomics. Additionally, we identified the GST-mediated metabolic resistance in an FPB-resistant E. glabrescens population, and screened for three candidate genes (GSTU8, GSTU18, GSTF1), which has significant implications for improving the weed management efficacy of FPB in rice production and guiding judicious herbicide usage.PMID:39022606 | PMC:PMC11253777 | DOI:10.3389/fpls.2024.1392460
Fallopian Tube-Derived High-Grade Serous Cancers Influence Ovarian Production of Norepinephrine and Generate Specific Metabolomic Signatures
ACS Pharmacol Transl Sci. 2024 Jul 1;7(7):2185-2195. doi: 10.1021/acsptsci.4c00238. eCollection 2024 Jul 12.ABSTRACTHigh-grade serous ovarian cancer is the most common and lethal gynecologic malignancy, which is often attributed to the lack of available screenings, allowing the disease to progress unnoticed until it is diagnosed at more aggressive stages. As such, identifying signals in the tumor microenvironment involved in the primary metastasis of tumorigenic fallopian tube epithelial (FTE) cells to the ovary could provide new avenues for prevention, diagnostics, or therapeutic intervention. Since our previous work identified that the interaction of tumorigenic FTE and the ovary causes the release of norepinephrine (NE) from the ovary, we intended to determine the effects of ovarian NE on signaling and invasion of tumorigenic FTE models and high-grade serous ovarian cancer cell lines. We demonstrate that NE does not universally enhance migration, invasion, or adhesion by using multiple cell types but does alter specific oncogenic protein expression in certain models. In vivo, we found that blocking NE signaling via slow-release propranolol pellets significantly increased survival time in mice injected intraperitoneally with murine FTE cells engineered to stably express shRNA for PTEN and an activated KRAS expression construct. Finally, we identified that the metabolome released from the ovary is variable depending upon which cell type it is cocultured with, suggesting that distinct driver mutations in fallopian tube epithelial tumor models and early lesions can alter specific metabolomes within the surrounding ovarian microenvironment. These metabolomes provide the next frontier for evaluating local signals of the tumor microenvironment that facilitate ovarian spread of FTE lesions.PMID:39022349 | PMC:PMC11249642 | DOI:10.1021/acsptsci.4c00238
Proton Nuclear Magnetic Resonance ((1)H NMR) Metabolomics Study in Serum, Urine, and Cystic Fluid for Differentiating Fertility and Staging of Intra-abdominal Hydatid Cyst in Adults
Euroasian J Hepatogastroenterol. 2024 Jan-Jun;14(1):30-34. doi: 10.5005/jp-journals-10018-1416.ABSTRACTBACKGROUND: Cystic echinococcosis (CE) is a parasitic zoonosis caused by the tapeworm Echinococcus granulosus. Over the past few years, a lot of research has been done on liver illnesses using metabolomics techniques to identify biomarkers which could identify the diseases in its early stages. The present study was done to explore biomarkers in serum, urine, and cystic fluid which would help in differentiating, staging, and assessing fertility of intra-abdominal hydatid cyst by using proton nuclear magnetic resonance (1H NMR) metabolomics.MATERIALS AND METHODS: In the study, 28 subjects (16 cases and 12 controls) were enrolled. Staging of hydatid cysts was performed using ultrasonography. In patients complying with case and control definition, blood, urine, and cystic fluid were collected for complete blood count, urine culture, Echinococcus IgG enzyme-linked immunosorbent assay (ELISA), and metabolomic analysis. The 17, 15, and 11 metabolites in serum, urine, and cystic fluid samples were quantified, respectively, to differentiate between case and control group.RESULTS: In this study, we observed that there was a significant downregulation of succinate metabolite in urine samples of cases, down-regulation of five metabolites (isoleucine, valine, histidine, tyrosine and formate) and upregulation of alanine in cystic fluid of cases.CONCLUSION: Current study demonstrates that metabolomics can be used non-invasively for rapid diagnosis of CE. This is one of the very few studies, which used 1H NMR spectroscopy, to analyze the profile of metabolites in serum, urine, and cystic fluid in cases of CE and controls.HOW TO CITE THIS ARTICLE: Raj N, Pandey A, Roy R, et al. Proton Nuclear Magnetic Resonance (1H NMR) Metabolomics Study in Serum, Urine, and Cystic Fluid for Differentiating Fertility and Staging of Intra-abdominal Hydatid Cyst in Adults. Euroasian J Hepato-Gastroenterol 2024;14(1):30-34.PMID:39022208 | PMC:PMC11249894 | DOI:10.5005/jp-journals-10018-1416
Integrative analysis of the transcriptome and metabolome reveals the importance of hepatokine FGF21 in liver aging
Genes Dis. 2023 Nov 7;11(5):101161. doi: 10.1016/j.gendis.2023.101161. eCollection 2024 Sep.ABSTRACTAging is a contributor to liver disease. Hence, the concept of liver aging has become prominent and has attracted considerable interest, but its underlying mechanism remains poorly understood. In our study, the internal mechanism of liver aging was explored via multi-omics analysis and molecular experiments to support future targeted therapy. An aged rat liver model was established with d-galactose, and two other senescent hepatocyte models were established by treating HepG2 cells with d-galactose and H2O2. We then performed transcriptomic and metabolomic assays of the aged liver model and transcriptome analyses of the senescent hepatocyte models. In livers, genes related to peroxisomes, fatty acid elongation, and fatty acid degradation exhibited down-regulated expression with aging, and the hepatokine Fgf21 expression was positively correlated with the down-regulation of these genes. In senescent hepatocytes, similar to the results found in aged livers, FGF21 expression was also decreased. Moreover, the expressions of cell cycle-related genes were significantly down-regulated, and the down-regulated gene E2F8 was the key cell cycle-regulating transcription factor. We then validated that FGF21 overexpression can protect against liver aging and that FGF21 can attenuate the declines in the antioxidant and regenerative capacities in the aging liver. We successfully validated the results from cellular and animal experiments using human liver and blood samples. Our study indicated that FGF21 is an important target for inhibiting liver aging and suggested that pharmacological prevention of the reduction in FGF21 expression due to aging may be used to treat liver aging-related diseases.PMID:39022127 | PMC:PMC11252782 | DOI:10.1016/j.gendis.2023.101161