Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

The Mechanism of Action of L-Tyrosine Derivatives against Chikungunya Virus Infection In Vitro Depends on Structural Changes

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 21;25(14):7972. doi: 10.3390/ijms25147972.ABSTRACTAlthough the disease caused by chikungunya virus (CHIKV) is of great interest to public health organizations around the world, there are still no authorized antivirals for its treatment. Previously, dihalogenated anti-CHIKV compounds derived from L-tyrosine (dH-Y) were identified as being effective against in vitro infection by this virus, so the objective of this study was to determine the mechanisms of its antiviral action. Six dH-Y compounds (C1 to C6) dihalogenated with bromine or chlorine and modified in their amino groups were evaluated by different in vitro antiviral strategies and in silico tools. When the cells were exposed before infection, all compounds decreased the expression of viral proteins; only C4, C5 and C6 inhibited the genome; and C1, C2 and C3 inhibited infectious viral particles (IVPs). Furthermore, C1 and C3 reduce adhesion, while C2 and C3 reduce internalization, which could be related to the in silico interaction with the fusion peptide of the E1 viral protein. Only C3, C4, C5 and C6 inhibited IVPs when the cells were exposed after infection, and their effect occurred in late stages after viral translation and replication, such as assembly, and not during budding. In summary, the structural changes of these compounds determine their mechanism of action. Additionally, C3 was the only compound that inhibited CHIKV infection at different stages of the replicative cycle, making it a compound of interest for conversion as a potential drug.PMID:39063216 | DOI:10.3390/ijms25147972

Circulating Liquid Biopsy Biomarkers in Glioblastoma: Advances and Challenges

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 21;25(14):7974. doi: 10.3390/ijms25147974.ABSTRACTGliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.PMID:39063215 | DOI:10.3390/ijms25147974

Metabolic Shift in Porcine Spermatozoa during Sperm Capacitation-Induced Zinc Flux

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 19;25(14):7919. doi: 10.3390/ijms25147919.ABSTRACTMammalian spermatozoa rely on glycolysis and mitochondrial oxidative phosphorylation for energy leading up to fertilization. Sperm capacitation involves a series of well-regulated biochemical steps that are necessary to give spermatozoa the ability to fertilize the oocyte. Additionally, zinc ion (Zn2+) fluxes have recently been shown to occur during mammalian sperm capacitation. Semen from seven commercial boars was collected and analyzed using image-based flow cytometry before, after, and with the inclusion of 2 mM Zn2+ containing in vitro capacitation (IVC) media. Metabolites were extracted and analyzed via Gas Chromatography-Mass Spectrometry (GC-MS), identifying 175 metabolites, with 79 differentially abundant across treatments (p < 0.05). Non-capacitated samples showed high levels of respiration-associated metabolites including glucose, fructose, citric acid, and pyruvic acid. After 4 h IVC, these metabolites significantly decreased, while phosphate, lactic acid, and glucitol increased (p < 0.05). With zinc inclusion, we observed an increase in metabolites such as lactic acid, glucitol, glucose, fructose, myo-inositol, citric acid, and succinic acid, while saturated fatty acids including palmitic, dodecanoic, and myristic acid decreased compared to 4 h IVC, indicating regulatory shifts in metabolic pathways and fatty acid composition during capacitation. These findings underscore the importance of metabolic changes in improving artificial insemination and fertility treatments in livestock and humans.PMID:39063161 | DOI:10.3390/ijms25147919

The Link between Inflammation, Lipid Derivatives, and Microbiota Metabolites in COVID-19 Patients: Implications on Eating Behaviors and Nutritional Status

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 19;25(14):7899. doi: 10.3390/ijms25147899.ABSTRACTExtreme inflammation that continues even after infections can lead to a cytokine storm. In recent times, one of the most common causes of cytokine storm activation has been SARS-CoV-2 infection. A cytokine storm leads to dysregulation and excessive stimulation of the immune system, producing symptoms typical of post-COVID syndrome, including chronic fatigue, shortness of breath, joint pain, trouble concentrating (known as "brain fog"), and even direct organ damage in the heart, lungs, kidneys, and brain. This work summarizes the current knowledge regarding inflammation and the cytokine storm related to SARS-CoV-2 infection. Additionally, changes in lipid metabolism and microbiota composition under the influence of inflammation in COVID-19, along with the possible underlying mechanisms, are described. Finally, this text explores potential health implications related to changes in eating behaviors and nutritional status in COVID-19 patients. Although research on the cytokine storm is still ongoing, there is convincing evidence suggesting that severe immune and inflammatory responses during the acute phase of COVID-19 may lead to long-term health consequences. Understanding these links is key to developing treatment strategies and supporting patients after infection.PMID:39063142 | DOI:10.3390/ijms25147899

Comparative Analysis of Breast Cancer Metabolomes Highlights Fascin's Central Role in Regulating Key Pathways Related to Disease Progression

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 18;25(14):7891. doi: 10.3390/ijms25147891.ABSTRACTOmics technologies provide useful tools for the identification of novel biomarkers in many diseases, including breast cancer, which is the most diagnosed cancer in women worldwide. We and others have reported a central role for the actin-bundling protein (fascin) in regulating breast cancer disease progression at different levels. However, whether fascin expression promotes metabolic molecules that could predict disease progression has not been fully elucidated. Here, fascin expression was manipulated via knockdown (fascinKD+NORF) and rescue (fascinKD+FORF) in the naturally fascin-positive (fascinpos+NORF) MDA-MB-231 breast cancer cells. Whether fascin dysregulates metabolic profiles that are associated with disease progression was assessed using untargeted metabolomics analyses via liquid chromatography-mass spectrometry. Overall, 12,226 metabolic features were detected in the tested cell pellets. Fascinpos+NORF cell pellets showed 2510 and 3804 significantly dysregulated metabolites compared to their fascinKD+NORF counterparts. Fascin rescue (fascinKD+FORF) revealed 2710 significantly dysregulated cellular metabolites compared to fascinKD+NORF counterparts. A total of 101 overlapped cellular metabolites between fascinKD+FORF and fascinpos+NORF were significantly dysregulated in the fascinKD+NORF cells. Analysis of the significantly dysregulated metabolites by fascin expression revealed their involvement in the metabolism of sphingolipid, phenylalanine, tyrosine, and tryptophan biosynthesis, and pantothenate and CoA biosynthesis, which are critical pathways for breast cancer progression. Our findings of fascin-mediated alteration of metabolic pathways could be used as putative poor prognostic biomarkers and highlight other underlying mechanisms of fascin contribution to breast cancer progression.PMID:39063133 | DOI:10.3390/ijms25147891

P38α MAPK Coordinates Mitochondrial Adaptation to Caloric Surplus in Skeletal Muscle

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 16;25(14):7789. doi: 10.3390/ijms25147789.ABSTRACTExcessive calorie intake leads to mitochondrial overload and triggers metabolic inflexibility and insulin resistance. In this study, we examined how attenuated p38α activity affects glucose and fat metabolism in the skeletal muscles of mice on a high-fat diet (HFD). Mice exhibiting diminished p38α activity (referred to as p38αAF) gained more weight and displayed elevated serum insulin levels, as well as a compromised response in the insulin tolerance test, compared to the control mice. Additionally, their skeletal muscle tissue manifested impaired insulin signaling, leading to resistance in insulin-mediated glucose uptake. Examination of muscle metabolites in p38αAF mice revealed lower levels of glycolytic intermediates and decreased levels of acyl-carnitine metabolites, suggesting reduced glycolysis and β-oxidation compared to the controls. Additionally, muscles of p38αAF mice exhibited severe abnormalities in their mitochondria. Analysis of myotubes derived from p38αAF mice revealed reduced mitochondrial respiratory capacity relative to the myotubes of the control mice. Furthermore, these myotubes showed decreased expression of Acetyl CoA Carboxylase 2 (ACC2), leading to increased fatty acid oxidation and diminished inhibitory phosphorylation of pyruvate dehydrogenase (PDH), which resulted in elevated mitochondrial pyruvate oxidation. The expected consequence of reduced mitochondrial respiratory function and uncontrolled nutrient oxidation observed in p38αAF myotubes mitochondrial overload and metabolic inflexibility. This scenario explains the increased likelihood of insulin resistance development in the muscles of p38αAF mice compared to the control mice on a high-fat diet. In summary, within skeletal muscles, p38α assumes a crucial role in orchestrating the mitochondrial adaptation to caloric surplus by promoting mitochondrial biogenesis and regulating the selective oxidation of nutrients, thereby preventing mitochondrial overload, metabolic inflexibility, and insulin resistance.PMID:39063031 | DOI:10.3390/ijms25147789

Platelet Storage-Problems, Improvements, and New Perspectives

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 16;25(14):7779. doi: 10.3390/ijms25147779.ABSTRACTPlatelet transfusions are routine procedures in clinical treatment aimed at preventing bleeding in critically ill patients, including those with cancer, undergoing surgery, or experiencing trauma. However, platelets are susceptible blood cells that require specific storage conditions. The availability of platelet concentrates is limited to five days due to various factors, including the risk of bacterial contamination and the occurrence of physical and functional changes known as platelet storage lesions. In this article, the problems related to platelet storage lesions are categorized into four groups depending on research areas: storage conditions, additive solutions, new testing methods for platelets (proteomic and metabolomic analysis), and extensive data modeling of platelet production (mathematical modeling, statistical analysis, and artificial intelligence). This article provides extensive information on the challenges, potential improvements, and novel perspectives regarding platelet storage.PMID:39063021 | DOI:10.3390/ijms25147779

Dissection of Metabolome and Transcriptome-Insights into Capsaicin and Flavonoid Accumulation in Two Typical Yunnan Xiaomila Fruits

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 16;25(14):7761. doi: 10.3390/ijms25147761.ABSTRACTPepper is an economically important vegetable worldwide, containing various specialized metabolites crucial for its development and flavor. Capsaicinoids, especially, are genus-specialized metabolites that confer a spicy flavor to Capsicum fruits. In this work, two pepper cultivars, YB (Capsicum frutescens L.) and JC (Capsicum baccatum L.) pepper, showed distinct differences in the accumulation of capsaicin and flavonoid. However, the molecular mechanism underlying them was still unclear. Metabolome analysis showed that the JC pepper induced a more abundant accumulation of metabolites associated with alkaloids, flavonoids, and capsaicinoids in the red ripening stages, leading to a spicier flavor in the JC pepper. Transcriptome analysis confirmed that the increased expression of transcripts associated with phenylpropanoid and flavonoid metabolic pathways occurred in the JC pepper. Integrative analysis of metabolome and transcriptome suggested that four structural genes, 4CL7, 4CL6, CHS, and COMT, were responsible for the higher accumulation of metabolites relevant to capsaicin and flavonoids. Through weighted gene co-expression network analyses, modules related to flavonoid biosynthesis and potential regulators for candidate genes were identified. The promoter analysis of four candidate genes showed they contained several cis-elements that were bonded to MYB, bZIP, and WRKY transcription factors. Further RT-qPCR examination verified three transcription factors, MYB, bZIP53, and WRKY25, that exhibited increased expression in the red ripening stage of the JC pepper compared to YB, which potentially regulated their expression. Altogether, our findings provide comprehensive understanding and valuable information for pepper breeding programs in the future.PMID:39063003 | DOI:10.3390/ijms25147761

Integrated Metabolomics and Transcriptomics Analyses of the Biosynthesis of Arbutin and 6'-O-Caffeoylarbutin in Vaccinium dunalianum Cell Suspension Cultures Fed with Hydroquinone

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 16;25(14):7760. doi: 10.3390/ijms25147760.ABSTRACTArbutin and 6'-O-caffeoylarbutin (CA) from Vaccinium dunalianum Wight are known for their ability to inhibit melanin synthesis. To boost the production of arbutin and CA, precursor feeding with hydroquinone (HQ) was studied in V. dunalianum suspension cells. The effect of HQ on the biosynthesis of arbutin and CA in the suspension cells was investigated using high-performance liquid chromatography (HPLC), and possible molecular mechanisms were analyzed using metabolomics and transcriptomics analyses. HPLC analysis only showed that the addition of HQ significantly enhanced arbutin synthesis in cells, peaking at 15.52 ± 0.28 mg·g-1 after 0.5 mmol·L-1 HQ treatment for 12 h. Subsequently, metabolomics identified 78 differential expression metabolites (DEMs), of which arbutin and CA were significantly up-regulated metabolites. Moreover, transcriptomics found a total of 10,628 differential expression genes (DEGs). The integrated transcriptomics and metabolomics revealed that HQ significantly enhanced the expression of two arbutin synthase (AS) genes (Unigene0063512 and Unigene0063513), boosting arbutin synthesis. Additionally, it is speculated that CA was generated from arbutin and 3,4,5-tricaffeoylquinic acid catalyzed by caffeoyl transferase, with Unigene0044545, Unigene0043539, and Unigene0017356 as potentially associated genes with CA synthesis. These findings indicate that the precursor feeding strategy offers a promising approach for the mass production of arbutin and CA in V. dunalianum suspension cells and provides new insights for CA biosynthesis in V. dunalianum.PMID:39063002 | DOI:10.3390/ijms25147760

Exploring the Mechanism of H(2)S Synthesis in Male Bactrian Camel Poll Glands Based on Data Independent Acquisition Proteomics and Non-Targeted Metabolomics

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 13;25(14):7700. doi: 10.3390/ijms25147700.ABSTRACTDuring estrus, the poll glands of male Bactrian Camels (Camelus Bactrianus) become slightly raised, exuding a large amount of pale yellow watery secretion with a characteristic odor that may contain hydrogen sulfide (H2S). However, whether H2S can be synthesized in the poll glands of male Bactrian Camels and its role in inducing camel estrus remains unclear. This study aimed to identify differentially expressed proteins (DEPs) and signaling pathways in the poll gland tissues of male Bactrian Camels using data independent acquisition (DIA) proteomics. Additionally, gas chromatography-mass spectrometry (GC-MS) was performed to identify differentially expressed metabolites (DEMs) in the neck hair containing secretions during estrus in male Bactrian Camels, to explore the specific expression patterns and mechanisms in the poll glands of camels during estrus. The results showed that cystathionine-γ-lyase (CTH) and cystathionine-β-synthase (CBS), which are closely related to H2S synthesis in camel poll glands during estrus, were mainly enriched in glycine, serine, and threonine metabolism, amino acid biosynthesis, and metabolic pathways. In addition, both enzymes were widely distributed and highly expressed in the acinar cells of poll gland tissues in camels during estrus. Meanwhile, the neck hair secretion contains high levels of amino acids, especially glycine, serine, threonine, and cystathionine, which are precursors for H2S biosynthesis. These results demonstrate that the poll glands of male Bactrian Camels can synthesize and secrete H2S during estrus. This study provides a basis for exploring the function and mechanism of H2S in the estrus of Bactrian Camels.PMID:39062942 | DOI:10.3390/ijms25147700

Multi-Omics Approaches in Oil Palm Research: A Comprehensive Review of Metabolomics, Proteomics, and Transcriptomics Based on Low-Temperature Stress

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 13;25(14):7695. doi: 10.3390/ijms25147695.ABSTRACTOil palm (Elaeis guineensis Jacq.) is a typical tropical oil crop with a temperature of 26-28 °C, providing approximately 35% of the total world's vegetable oil. Growth and productivity are significantly affected by low-temperature stress, resulting in inhibited growth and substantial yield losses. To comprehend the intricate molecular mechanisms underlying the response and acclimation of oil palm under low-temperature stress, multi-omics approaches, including metabolomics, proteomics, and transcriptomics, have emerged as powerful tools. This comprehensive review aims to provide an in-depth analysis of recent advancements in multi-omics studies on oil palm under low-temperature stress, including the key findings from omics-based research, highlighting changes in metabolite profiles, protein expression, and gene transcription, as well as including the potential of integrating multi-omics data to reveal novel insights into the molecular networks and regulatory pathways involved in the response to low-temperature stress. This review also emphasizes the challenges and prospects of multi-omics approaches in oil palm research, providing a roadmap for future investigations. Overall, a better understanding of the molecular basis of the response of oil palm to low-temperature stress will facilitate the development of effective breeding and biotechnological strategies to improve the crop's resilience and productivity in changing climate scenarios.PMID:39062936 | DOI:10.3390/ijms25147695

Transcriptome and Metabolome Analyses of Leaves from Cutting Rejuvenation of Ancient Cinnamomum camphora

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 12;25(14):7664. doi: 10.3390/ijms25147664.ABSTRACTRejuvenation refers to the transition from the state of mature to juvenile. Many ancient Cinnamomum camphora have aged and died due to climatic and anthropic factors. Vegetative propagation can protect valuable germplasm resources. In this study, a 2000-year-old ancient C. camphora and its 2-year-old cutting plantlets were selected as experimental materials. The results indicated that the number of leaves with palisade tissue (Pal) cell layers was different between samples, with two layers in the rejuvenated leaves (RLs) and one layer in the mature leaves (MLs) and young leaves (YLs). Indole-3-acetic acid (IAA), isopentenyladenine (iP) and isopentenyladenosine (iPR) concentrations were significantly higher in RLs than in MLs and YLs, but the abscisic acid (ABA) concentration was lower. Targeted metabolome analysis identified 293 differentially accumulated metabolites (DAMs). Meanwhile, a total of 5241 differentially expressed genes (DEGs) were identified by transcriptome sequencing. According to the KEGG analysis, there were seven important enriched pathways in the MLs, RLs and YLs, including plant hormone signal transduction (57 DEGs), plant-pathogen interaction (56 DEGs) and MAPK signaling pathway-plant (36 DEGs). KEGG enrichment conjoint analyses of DEGs and DAMs identified 16 common pathways. Integrated analyses of cytological, hormone, metabolome and transcriptome elements can provide a research basis in regard to the rejuvenation regulatory mechanism of ancient C. camphora.PMID:39062907 | DOI:10.3390/ijms25147664

Transcriptomic and Metabolomic Insights into ABA-Related Genes in Cerasus humilis under Drought Stress

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 11;25(14):7635. doi: 10.3390/ijms25147635.ABSTRACTCerasus humilis, a small shrub of the Cerasus genus within the Rosaceae family, is native to China and renowned for its highly nutritious and medicinal fruits, robust root system, and remarkable drought resistance. This study primarily employed association transcriptome and metabolome analyses to assess changes in abscisic acid (ABA) levels and identify key regulatory genes in C. humilis subjected to varying degrees of drought stress. Notably, we observed distinct alterations in transcription factors across different drought intensities. Specifically, our transcriptome data indicated noteworthy shifts in GATA, MYB, MYC, WRKY, C2H2, and bHLH transcription factor families. Furthermore, combined transcriptomic and metabolomic investigations demonstrated significant enrichment of metabolic pathways, such as 'Carbon metabolism', 'Biosynthesis of amino acids', 'Biosynthesis of cofactors', 'Phenylpropanoid biosynthesis', 'Starch and sucrose metabolism', and 'Plant hormone signal transduction' under moderate (Mod) or severe (Sev) drought conditions. A total of 11 candidate genes involved in ABA biosynthesis and signaling pathways were identified. The down-regulated genes included secoisolariciresinol dehydrogenase-like and PYL2. Conversely, genes including FAD-dependent urate hydroxylase-like, cytochrome P450 97B2, carotenoid cleavage dioxygenase 4 (CCD4), SnRK2.2, ABI 5-like protein 5, PP2C 51, and SnRK2.3, were up-regulated under Mod or Sev drought stress. This study lays the genetic foundation for ABA biosynthesis to enhance drought tolerance and provides genetic resources for plant genetic engineering and breeding efforts.PMID:39062878 | DOI:10.3390/ijms25147635

Understanding the Conundrum of Pancreatic Cancer in the Omics Sciences Era

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 11;25(14):7623. doi: 10.3390/ijms25147623.ABSTRACTPancreatic cancer (PC) is an increasing cause of cancer-related death, with a dismal prognosis caused by its aggressive biology, the lack of clinical symptoms in the early phases of the disease, and the inefficacy of treatments. PC is characterized by a complex tumor microenvironment. The interaction of its cellular components plays a crucial role in tumor development and progression, contributing to the alteration of metabolism and cellular hyperproliferation, as well as to metastatic evolution and abnormal tumor-associated immunity. Furthermore, in response to intrinsic oncogenic alterations and the influence of the tumor microenvironment, cancer cells undergo a complex oncogene-directed metabolic reprogramming that includes changes in glucose utilization, lipid and amino acid metabolism, redox balance, and activation of recycling and scavenging pathways. The advent of omics sciences is revolutionizing the comprehension of the pathogenetic conundrum of pancreatic carcinogenesis. In particular, metabolomics and genomics has led to a more precise classification of PC into subtypes that show different biological behaviors and responses to treatments. The identification of molecular targets through the pharmacogenomic approach may help to personalize treatments. Novel specific biomarkers have been discovered using proteomics and metabolomics analyses. Radiomics allows for an earlier diagnosis through the computational analysis of imaging. However, the complexity, high expertise required, and costs of the omics approach are the main limitations for its use in clinical practice at present. In addition, the studies of extracellular vesicles (EVs), the use of organoids, the understanding of host-microbiota interactions, and more recently the advent of artificial intelligence are helping to make further steps towards precision and personalized medicine. This present review summarizes the main evidence for the application of omics sciences to the study of PC and the identification of future perspectives.PMID:39062863 | DOI:10.3390/ijms25147623

Maternal Serum Metabolomics in Mid-Pregnancy Identifies Lipid Pathways as a Key Link to Offspring Obesity in Early Childhood

Sat, 27/07/2024 - 12:00
Int J Mol Sci. 2024 Jul 11;25(14):7620. doi: 10.3390/ijms25147620.ABSTRACTMaternal metabolism during pregnancy shapes offspring health via in utero programming. In the Healthy Start study, we identified five subgroups of pregnant women based on conventional metabolic biomarkers: Reference (n = 360); High HDL-C (n = 289); Dyslipidemic-High TG (n = 149); Dyslipidemic-High FFA (n = 180); Insulin Resistant (IR)-Hyperglycemic (n = 87). These subgroups not only captured metabolic heterogeneity among pregnant participants but were also associated with offspring obesity in early childhood, even among women without obesity or diabetes. Here, we utilize metabolomics data to enrich characterization of the metabolic subgroups and identify key compounds driving between-group differences. We analyzed fasting blood samples from 1065 pregnant women at 18 gestational weeks using untargeted metabolomics. We used weighted gene correlation network analysis (WGCNA) to derive a global network based on the Reference subgroup and characterized distinct metabolite modules representative of the different metabolomic profiles. We used the mummichog algorithm for pathway enrichment and identified key compounds that differed across the subgroups. Eight metabolite modules representing pathways such as the carnitine-acylcarnitine translocase system, fatty acid biosynthesis and activation, and glycerophospholipid metabolism were identified. A module that included 189 compounds related to DHA peroxidation, oxidative stress, and sex hormone biosynthesis was elevated in the Insulin Resistant-Hyperglycemic vs. the Reference subgroup. This module was positively correlated with total cholesterol (R:0.10; p-value < 0.0001) and free fatty acids (R:0.07; p-value < 0.05). Oxidative stress and inflammatory pathways may underlie insulin resistance during pregnancy, even below clinical diabetes thresholds. These findings highlight potential therapeutic targets and strategies for pregnancy risk stratification and reveal mechanisms underlying the developmental origins of metabolic disease risk.PMID:39062861 | DOI:10.3390/ijms25147620

Polydopamine Nanoparticle-Based Combined Chemotherapy and Photothermal Therapy for the Treatment of Liver Cancer

Fri, 26/07/2024 - 12:00
ACS Appl Mater Interfaces. 2024 Jul 26. doi: 10.1021/acsami.4c08491. Online ahead of print.ABSTRACTPolydopamine nanoparticles (PDA NPs) are proposed as an anti-cancer tool against hepatocellular carcinoma through the combination of near-infrared (NIR)-mediated hyperthermia and loading with a chemotherapeutic drug, sorafenib (SRF). Cell membranes isolated from a liver cancer cell line (HepG2) have been exploited for the coating of the nanoparticles (thus obtaining CM-SRF-PDA NPs), to promote homotypic targeting toward cancer cells. The selective targeting ability and the combined photothermal and chemotherapeutic activity of the CM-SRF-PDA NPs following NIR irradiation have been evaluated on cell cultures in static and dynamic conditions, besides three-dimensional culture models. Eventually, the therapeutic effectiveness of the proposed approach has also been tested ex ovo on HepG2 spheroid-grafted quail embryos. This comprehensive investigation, supported by proteomic analysis, showed the effectiveness of the proposed nanoplatform and strongly suggests further pre-clinical testing in the treatment of liver cancer.PMID:39058979 | DOI:10.1021/acsami.4c08491

Hypoxic-Ischemic Insult Alters Polyamine and Neurotransmitter Abundance in the Specific Neonatal Rat Brain Subregions

Fri, 26/07/2024 - 12:00
ACS Chem Neurosci. 2024 Jul 26. doi: 10.1021/acschemneuro.4c00190. Online ahead of print.ABSTRACTNeonatal hypoxic-ischemic (HI) brain insult is a major cause of neonatal mortality and morbidity. To assess the underlying pathological mechanisms, we mapped the spatiotemporal changes in polyamine, amino acid, and neurotransmitter levels, following HI insult (by the Rice-Vannucci method) in the brains of seven-day-old rat pups. Matrix-assisted laser desorption/ionization mass spectrometry imaging of chemically modified small-molecule metabolites by 4-(anthracen-9-yl)-2-fluoro-1-methylpyridin-1-ium iodide revealed critical HI-related metabolomic changes of 22 metabolites in 14 rat brain subregions, much earlier than light microscopy detected signs of neuronal damage. For the first time, we demonstrated excessive polyamine oxidation and accumulation of 3-aminopropanal in HI neonatal brains, which was later accompanied by neuronal apoptosis enhanced by increases in glycine and norepinephrine in critically affected brain regions. Specifically, putrescine, cadaverine, and 3-aminopropanal increased significantly as early as 12 h postinsult, mainly in motor and somatosensory cortex, hippocampus, and midbrain, followed by an increase in norepinephrine 24 h postinsult, which was predominant in the caudate putamen, the region most vulnerable to HI. The decrease of γ-aminobutyric acid (GABA) and the continuous dysregulation of the GABAergic system together with low taurine levels up to 36 h sustained progressive neurodegenerative cellular processes. The molecular alterations presented here at the subregional rat brain level provided unprecedented insight into early metabolomic changes in HI-insulted neonatal brains, which may further aid in the identification of novel therapeutic targets for the treatment of neonatal HI encephalopathy.PMID:39058922 | DOI:10.1021/acschemneuro.4c00190

Integrated Proteomics and Metabolomics Reveal Altered Metabolic Regulation of Xanthobacter autotrophicus under Electrochemical Water-Splitting Conditions

Fri, 26/07/2024 - 12:00
ACS Appl Mater Interfaces. 2024 Jul 26. doi: 10.1021/acsami.4c07363. Online ahead of print.ABSTRACTBiological-inorganic hybrid systems are a growing class of technologies that combine microorganisms with materials for a variety of purposes, including chemical synthesis, environmental remediation, and energy generation. These systems typically consider microorganisms as simple catalysts for the reaction of interest; however, other metabolic activity is likely to have a large influence on the system performance. The investigation of biological responses to the hybrid environment is thus critical to the future development and optimization. The present study investigates this phenomenon in a recently reported hybrid system that uses electrochemical water splitting to provide reducing equivalents to the nitrogen-fixing bacteria Xanthobacter autotrophicus for efficient reduction of N2 to biomass that may be used as fertilizer. Using integrated proteomic and metabolomic methods, we find a pattern of differentiated metabolic regulation under electrochemical water-splitting (hybrid) conditions with an increase in carbon fixation products glycerate-3-phosphate and acetyl-CoA that suggests a high energy availability. We further report an increased expression of proteins of interest, namely, those responsible for nitrogen fixation and assimilation, which indicate increased rates of nitrogen fixation and support previous observations of faster biomass accumulation in the hybrid system compared to typical planktonic growth conditions. This work complicates the inert catalyst view of biological-inorganic hybrids while demonstrating the power of multiomics analysis as a tool for deeper understanding of those systems.PMID:39058742 | DOI:10.1021/acsami.4c07363

Comments on "Characterization of Selenium Speciation in Se-Enriched Crops: Crop Selection Approach"

Fri, 26/07/2024 - 12:00
J Agric Food Chem. 2024 Jul 26. doi: 10.1021/acs.jafc.4c02509. Online ahead of print.NO ABSTRACTPMID:39058297 | DOI:10.1021/acs.jafc.4c02509

Molecular mechanisms of temperature tolerance plasticity in an arthropod

Fri, 26/07/2024 - 12:00
Genome Biol Evol. 2024 Jul 26:evae165. doi: 10.1093/gbe/evae165. Online ahead of print.ABSTRACTHow species thrive in a wide range of environments is a major focus of evolutionary biology. For many species, limited genetic diversity or gene flow among habitats means that phenotypic plasticity must play an important role in their capacity to tolerate environmental heterogeneity and to colonize new habitats. However, we have a limited understanding of the molecular components that govern plasticity in ecologically relevant phenotypes. We examined this hypothesis in a spider species (Stegodyphus dumicola) with extremely low species-wide genetic diversity that nevertheless occupies a broad range of thermal environments. We determined phenotypic responses to temperature stress in individuals from four climatic zones using common garden acclimation experiments to disentangle phenotypic plasticity from genetic adaptations. Simultaneously, we created data sets on multiple molecular modalities: the genome, the transcriptome, the methylome, the metabolome and the bacterial microbiome to determine associations with phenotypic responses. Analyses of phenotypic and molecular associations reveal that acclimation responses in the transcriptome and metabolome correlate with patterns of phenotypic plasticity in temperature tolerance. Surprisingly, genes whose expression seemed to be involved in plasticity in temperature tolerance were generally highly methylated contradicting the idea that DNA methylation stabilizes gene expression. This suggests that the function of DNA methylation in invertebrates varies not only among species but also among genes. The bacterial microbiome was stable across the acclimation period; combined with our previous demonstrations that the microbiome is temporally stable in wild populations, this is convincing evidence that the microbiome does not facilitate plasticity in temperature tolerance. Our results suggest that population-specific variation in temperature tolerance among acclimation temperatures appears to result from the evolution of plasticity in mainly gene expression.PMID:39058286 | DOI:10.1093/gbe/evae165

Pages