Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

The metabolic response of HepG2 cells to extracellular vesicles derived from Raphanus sativus L. var. caudatus Alef microgreens probed by chemometrics-assisted LC-MS/MS analysis

Fri, 16/08/2024 - 12:00
Food Chem. 2024 Aug 10;461:140833. doi: 10.1016/j.foodchem.2024.140833. Online ahead of print.ABSTRACTExtracellular vesicles (EVs) derived from Thai rat-tailed radish (Raphanus sativus L. var. caudatus Alef) microgreens were previously reported as novel bioactive bioparticles against cancer. This study aimed to investigate the metabolic disruption associated with the antiproliferative effect against HepG2 liver cancer cells, a representative of metabolizing cells and tissue. In this study, the neutral red uptake assay was performed to screen for the antiproliferative effect and determine the cytotoxic concentrations of EVs against HepG2 cells. An untargeted approach to cellular metabolomics was conducted using liquid chromatography coupled with the high-resolution mass spectrometry system with multivariate and univariate analyses to determine the metabolic changes of HepG2 liver cancer cells after EV treatment. EVs showed an antiproliferative effect in HepG2 cells with a half-maximal inhibitory concentration (IC50) of 685.5 ± 26.4 and 139.7 ± 4.2 μg/ml at 24 and 48 h, respectively. In the metabolomics study, 163 metabolites were annotated, with 61 significantly altered metabolites. Among these significant metabolites, 18 were related to glycerophospholipid metabolism. Phosphatidylcholine-the important lipid building blocks for cell membranes, lipid mediators for cell proliferation, and immunosuppressive signaling-was mainly decreased by EV treatment. The alteration of cellular phospholipids in cancer was discussed. This finding suggested the possible mechanism of anticancer action of EVs by disrupting phospholipid metabolism and survival signaling in cancer cells. Further studies should be made to confirm EVs' potential as single and combination therapy in vivo to reduce cancer resistance. This may close the gap between in vitro study and clinical setting.PMID:39151349 | DOI:10.1016/j.foodchem.2024.140833

HRMAS (1)H NMR and CPMAS (13)C NMR spectroscopies coupled with chemometrics for the metabolomic investigation of commercial teas

Fri, 16/08/2024 - 12:00
Food Chem. 2024 Aug 10;461:140816. doi: 10.1016/j.foodchem.2024.140816. Online ahead of print.ABSTRACTIn this study, the metabolome of different types of tea (i.e., black, green and earl grey) is explored by means of HRMAS 1H (i.e., semisolid state) NMR and CPMAS 13C (i.e., solid state) NMR spectroscopies. By elaborating the metabolomic data with unsupervised and supervised chemometric tools (PCA, PLS-DA), it was possible to set up classification models with the aim to discriminate the different types of tea as based on differences in their chemical composition. Both the applications of the NMR spectroscopies also allowed to obtain information about the metabolic biomarkers leading the differentiation among teas. These were mainly represented by phenolic compounds. Also, some non-phenolic compounds, such as amino acids, carbohydrates, and terpenoids, played important roles in shaping tea quality. The findings of this study provided useful insights into the application of solid and semisolid state NMR spectroscopies, in combination with chemometrics, in the context of food authentication and traceability.PMID:39151344 | DOI:10.1016/j.foodchem.2024.140816

Metabolomic analysis combined with machine learning algorithms enables the evaluation of postharvest pecan color stability

Fri, 16/08/2024 - 12:00
Food Chem. 2024 Aug 9;461:140814. doi: 10.1016/j.foodchem.2024.140814. Online ahead of print.ABSTRACTNut kernel color is a crucial quality indicator affecting the consumers first impression of the product. While growing evidence suggests that plant phenolics and their derivatives are linked to nut kernel color, the compounds (biomarkers) responsible for kernel color stability during storage remain elusive. Here, pathway-based metabolomics with machine learning algorithms were employed to identify key metabolites of postharvest pecan color stability. Metabolites in phenylpropanoid, flavonoid, and anthocyanin biosynthetic pathways were analyzed in the testa of nine pecan cultivars using liquid chromatography-mass spectrometry. With color measurements, different machine learning models were compared to find relevant biomarkers of pecan color phenotypes. Results revealed potential marker compounds that included flavonoid precursors and anthocyanidins as well as anthocyanins (e.g., peonidin, delphinidin-3-O-glucoside). Our findings provide a foundation for future research in the area, and will help select genes/proteins for the breeding of pecans with stable and desirable kernel color.PMID:39151343 | DOI:10.1016/j.foodchem.2024.140814

Integration of microbiome, metabolomics and transcriptome for in-depth understanding of berberine attenuates AOM/DSS-induced colitis-associated colorectal cancer

Fri, 16/08/2024 - 12:00
Biomed Pharmacother. 2024 Aug 15;179:117292. doi: 10.1016/j.biopha.2024.117292. Online ahead of print.ABSTRACTA type of colorectal cancer (CRC),Colitis-associated colorectal cancer (CAC), is closely associated with chronic inflammation and gut microbiota dysbiosis. Berberine (BBR) has a long history in the treatment of intestinal diseases, which has been reported to inhibit colitis and CRC. However, the mechanism of its action is still unclear. Here, this study aimed to explore the potential protective effects of BBR on azoxymethane (AOM)/dextransulfate sodium (DSS)-induced colitis and tumor mice, and to elucidate its potential molecular mechanisms by microbiota, genes and metabolic alterations. The results showed that BBR inhibited the gut inflammation and improved the function of mucosal barrier to ameliorate AOM/DSS-induced colitis. And BBR treatment significantly reduced intestinal tumor development and ki-67 expression of intestinal tissue along with promoted apoptosis. Through microbiota analysis based on the 16 S rRNA gene, we found that BBR treatment improved intestinal microbiota imbalance in AOM/DSS-induced colitis and tumor mice, which were characterized by an increase of beneficial bacteria, for instance Akkermanisa, Lactobacillus, Bacteroides uniformis and Bacteroides acidifaciens. In addition, transcriptome analysis showed that BBR regulated colonic epithelial signaling pathway in CAC mice particularly by tryptophan metabolism and Wnt signaling pathway. Notably, BBR treatment resulted in the enrichment of amino acids metabolism and microbiota-derived SCFA metabolites. In summary, our research findings suggest that the gut microbiota-amino acid metabolism-Wnt signaling pathway axis plays critical role in maintaining intestinal homeostasis, which may provide new insights into the inhibitory effects of BBR on colitis and colon cancer.PMID:39151314 | DOI:10.1016/j.biopha.2024.117292

Integrated untargeted and targeted lipidomics discovers LPE 16:0 as a protector against respiratory syncytial virus infection

Fri, 16/08/2024 - 12:00
J Pharm Biomed Anal. 2024 Aug 6;250:116399. doi: 10.1016/j.jpba.2024.116399. Online ahead of print.ABSTRACTRespiratory Syncytial Virus (RSV) is a leading cause of acute lower respiratory infections, imposing a substantial burden on healthcare systems globally. While lipid disorders have been observed in the lungs of infants and young children with RSV pneumonia, the specific characterization of these lipids and their roles in the development and progression of RSV pneumonia remain largely unexplored. To address this tissue, we established a non-targeted high-resolution lipidomics platform using UHPLC-Q-Exactive-MS to analyze lipid profiles in bronchoalveolar lavage fluid (BALF) obtained from mice infected with RSV. Through the lipidomics analysis, a total of 72 lipids species were identified, with 40 lipids were significantly changed. Notably, the primary changes were observed in ether phospholipids and lysophospholipids. Furthermore, a targeted lipidomics analysis utilizing UHPLC-QQQ-MS/MS was developed to specifically assess the levels of lysophospholipids, including lysophosphocholine 16:0 (LPC 16:0), lysophosphoethanolamine 16:0 (LPE 16:0) and lysophosphoglycerol 16:0 (LPG 16:0), in RSV-infected mice compared to control mice. Animal experiments revealed that LPE 16:0, rather than LPC 16:0 or LPG 16:0, provided protection against RSV-induced weight loss, reduced lung viral load, regulated immune cells and mitigated lung injury in mice afflicted with RSV pneumonia. In summary, our findings suggested that the host responses to RSV infection pathology are closely with various lipid metabolic. Additionally, our results elucidated novel biological functions of LPE 16:0 and offering new avenues for drug development against RSV pneumonia.PMID:39151296 | DOI:10.1016/j.jpba.2024.116399

Inhibition of Giardia duodenalis by isocryptolepine -triazole adducts and derivatives

Fri, 16/08/2024 - 12:00
Int J Parasitol Drugs Drug Resist. 2024 Aug 13;26:100561. doi: 10.1016/j.ijpddr.2024.100561. Online ahead of print.ABSTRACTGiardia duodenalis, a widespread parasitic flagellate protozoan causing giardiasis, affects millions annually, particularly impacting children and travellers. With no effective vaccine available, treatment primarily relies on the oral administration of drugs targeting trophozoites in the small intestine. However, existing medications pose challenges due to side effects and drug resistance, necessitating the exploration of novel therapeutic options. Isocryptolepine, derived from Cryptolepis sanguinolenta, has demonstrated promising antimicrobial and anticancer properties. This study evaluated eighteen isocryptolepine-triazole adducts for their antigiardial activities and cytotoxicity, with ISO2 demonstrating potent antigiardial activity and minimal cytotoxicity on human intestinal cells. Metabolomics analysis revealed significant alterations in G. duodenalis metabolism upon ISO2 treatment, particularly affecting phospholipid metabolism. Notably, the upregulation of phytosphingosine and triglycerides, and downregulation of certain fatty acids, suggest a profound impact on membrane composition and integrity, potentially contributing to the parasite's demise. Pathway analysis highlighted glycerophospholipid metabolism, cytochrome b5 family heme/steroid binding domain, and P-type ATPase mechanisms as critical pathways affected by ISO2 treatment, underscoring its importance as a potential target for antigiardial therapy. These findings shed light on the mode of action of ISO2 against G. duodenalis and provide valuable insights for further drug development. Moreover, the study also offers a promising avenue for the exploration of isocryptolepine derivatives as novel therapeutic agents for giardiasis, addressing the urgent need for more effective and safer treatment options.PMID:39151240 | DOI:10.1016/j.ijpddr.2024.100561

Metabolic profiling of atypical meningioma and recurrent meningioma: a comparative analysis with proton magnetic resonance spectroscopy

Fri, 16/08/2024 - 12:00
J Neurosurg. 2024 Aug 16:1-10. doi: 10.3171/2024.4.JNS24187. Online ahead of print.ABSTRACTOBJECTIVE: Meningiomas are predominantly benign, but some cases exhibit recurrent growth after surgery and undergo malignant transformation to WHO grade 2 or grade 3. Despite progress in genetic analyses, advancements in metabolomic analysis remain less established. Herein, the authors investigated metabolic activity differences between WHO grade 1 meningiomas and WHO grade 2 or 3 meningiomas by noninvasively using proton magnetic resonance spectroscopy (1H-MRS), aiming to preoperatively estimate malignancy. They also reviewed the literature to elucidate this aspect of meningioma research.METHODS: At Ryukyu University Hospital, the authors focused on 93 patients diagnosed with meningioma between 2011 and 2021. The inclusion criteria encompassed prior surgery, pathological diagnoses of meningioma, and preoperative 1H-MRS. Group I included 71 patients with WHO grade 1 meningioma and group II included 22 patients, comprising 19 and 3 with WHO grade 2 and 3 meningioma, respectively. The authors retrospectively conducted a comparative analysis of patient backgrounds and tumor metabolites.RESULTS: Group I and II did not differ significantly in terms of patient demographic characteristics (age and sex). Group II demonstrated a significantly lower extent of tumor resection (p < 0.01), higher MIB-1 labeling index (LI) (p < 0.05), higher incidence of prior irradiation (p < 0.001), and increased rate of tumor recurrence (p = 0.005) compared to group I. According to 1H-MRS, all metabolites, except lactate, displayed significantly higher median creatine (Cr) ratios in group II than group I: glutamine/Cr was 8.46, glutamate/Cr was 9.49, lipid/Cr was 11.36, and choline/Cr was 2.77. According to the receiver operating characteristic (ROC) analysis, glutamine had the largest area under the curve of 0.765 among 10 metabolites, and the cutoff value for distinguishing between group I and II was 5.76.CONCLUSIONS: In cases pathologically graded as WHO grade 2 or 3 meningiomas, metabolic products such as glutamine, glutamate, lipids, and choline increased significantly. These changes were correlated with elevation of the MIB-1 LI. In group II, the mean MIB-1 LI was 8.58, significantly higher than in group I, suggesting a strong association with pathological malignancy. Therefore, 1H-MRS may help to noninvasively predict tumor metabolic activity and tumor recurrence. Furthermore, the authors concluded from the ROC analysis that glutamine may be a potential indicator of future growth of meningioma and benefits of early surgery.PMID:39151200 | DOI:10.3171/2024.4.JNS24187

Site-Selective Antibody Conjugation with Dibromopyrazines

Fri, 16/08/2024 - 12:00
Bioconjug Chem. 2024 Aug 16. doi: 10.1021/acs.bioconjchem.4c00296. Online ahead of print.ABSTRACTIn recent years, antibody conjugates have evolved as state-of-the-art options for diagnostic and therapeutic applications. During site-selective antibody conjugation, incomplete rebridging of antibody chains limits the homogeneity of conjugates and calls for the development of new rebridging agents. Herein, we report a dibromopyrazine derivative optimized to reach highly homogeneous conjugates rapidly and with high conversion on rebridging of trastuzumab, even providing a feasible route for antibody modification in acidic conditions. Furthermore, coupling a fluorescent dye and a cytotoxic drug resulted in effective antibody conjugates with excellent serum stability and in vitro selectivity, demonstrating the utility of the dibromopyrazine rebridging agent to produce on-demand future antibody conjugates for diagnostic or therapeutic applications.PMID:39151068 | DOI:10.1021/acs.bioconjchem.4c00296

An 8-(Diazomethyl) Quinoline Derivatized Acyl-CoA in Silico Mass Spectral Library Reveals the Landscape of Acyl-CoA in Aging Mouse Organs

Fri, 16/08/2024 - 12:00
Anal Chem. 2024 Aug 16. doi: 10.1021/acs.analchem.4c02113. Online ahead of print.ABSTRACTAcyl-Coenzyme As (acyl-CoAs) are essential intermediates to incorporate carboxylic acids into the bioactive metabolic network across all species, which play important roles in lipid remodeling, fatty acids, and xenobiotic carboxylic metabolism. However, due to the poor liquid chromatographic behavior, the relatively low mass spectrometry (MS) sensitivity, and lack of authentic standards for annotation, the in-depth untargeted profiling of acyl-CoAs is challenging. We developed a chemical derivatization strategy of acyl-CoAs by employing 8-(diazomethyl) quinoline (8-DMQ) as the labeling reagent, which increased the detection sensitivity by 625-fold with good peak shapes. By applying the MS/MS fragmentation rules learned from the MS/MS spectra of 8-DMQ-acyl-CoA authentic standards, an 8-DMQ-acyl-CoA in silico mass spectral library containing 33,344 high-resolution tandem mass spectra of 8,336 acyl-CoA species was created. The in silico library facilitated the high-throughput and automatic annotation of acyl-CoA using multiple metabolomic data processing tools, such as NIST MS Search and MSDIAL. The feasibility of the in silico library in a complex sample was demonstrated by profiling endogenous acyl-CoAs in multiple organs of an aging mouse. 53 acyl-CoA species were annotated, including 12 oxidized fatty acyl-CoAs and 3 novel nonfatty acyl-CoAs. False positive annotations were further screened by developing an eXtreme Gradient Boosting (XGBoost) based retention time prediction model. The organ distribution and the aging dynamics of acyl-CoAs in a mouse model were discussed for the first time, which helped to elucidate the organ-specific function of acyl-CoAs and the role of different acyl-CoA species during aging.PMID:39150895 | DOI:10.1021/acs.analchem.4c02113

Protocol for the simultaneous quantification of oxidative purine lesions in DNA using LC-MS/MS analysis

Fri, 16/08/2024 - 12:00
STAR Protoc. 2024 Aug 14;5(3):103191. doi: 10.1016/j.xpro.2024.103191. Online ahead of print.ABSTRACTMost DNA damages induced through oxidative metabolism are single lesions which can accumulate in tissues. Here, we present a protocol for the simultaneous quantification of oxidative purine lesions (cPu and 8-oxo-Pu) in DNA. We describe steps for enzymatic digestion of DNA and sample pre-purification, followed by quantification through liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. We optimized this protocol in commercially available calf thymus DNA and used genomic and mitochondrial DNA extracted from cell cultures and animal and human tissues.PMID:39150848 | DOI:10.1016/j.xpro.2024.103191

Treatment response of venlafaxine induced alterations of gut microbiota and metabolites in a mouse model of depression

Fri, 16/08/2024 - 12:00
Metab Brain Dis. 2024 Aug 16. doi: 10.1007/s11011-024-01403-x. Online ahead of print.ABSTRACTAntidepressants remain the first-line treatment for depression. However, the factors influencing medication response are still unclear. Accumulating evidence implicates an association between alterations in gut microbiota and antidepressant response. Therefore, the aim of this study is to investigate the role of the gut microbiota-brain axis in the treatment response of venlafaxine. After chronic social defeat stress and venlafaxine treatment, mice were divided into responders and non-responders groups. We compared the composition of gut microbiota using 16 S ribosomal RNA sequencing. Meanwhile, we quantified metabolomic alterations in serum and hippocampus, as well as hippocampal neurotransmitter levels using liquid chromatography-mass spectrometry. We found that the abundances of 29 amplicon sequence variants (ASVs) were significantly altered between the responders and non-responders groups. These ASVs belonged to 8 different families, particularly Muribaculaceae. Additionally, we identified 38 and 39 differential metabolites in serum and hippocampus between the responders and non-responders groups, respectively. Lipid, amino acid, and purine metabolisms were enriched in both serum and hippocampus. In hippocampus, the concentrations of tryptophan, phenylalanine, gamma-aminobutyric acid, glutamic acid, and glutamine were increased, while the level of succinic acid was decreased in the responders group, compared with the non-responders group. Our findings suggest that the gut microbiota may play a role in the antidepressant effect of venlafaxine by modulating metabolic processes in the central and peripheral tissues. This provides a novel microbial and metabolic framework for understanding the impact of the gut microbiota-brain axis on antidepressant response.PMID:39150654 | DOI:10.1007/s11011-024-01403-x

Integrating Lipidomics, Metabolomics, and Network Pharmacology to Reveal the Mechanism of Cannabidiol against Inflammation in High-Fat, High-Cholesterol Diet-Induced Mice

Fri, 16/08/2024 - 12:00
J Agric Food Chem. 2024 Aug 16. doi: 10.1021/acs.jafc.4c04994. Online ahead of print.ABSTRACTInflammation plays a critical role in the development of numerous diseases. Cannabidiol (CBD), found in hemp, exhibits significant pharmacological activities. Accumulating evidence suggests that CBD has anti-inflammatory and cardiovascular protection effects, but the potential mechanisms require further exploration. In this study, we aimed to reveal the mechanisms of CBD against high-fat, high-cholesterol (HFC) diet-induced inflammation combining metabolomics with network pharmacology. First, plasma lipidomics results indicated that oxidized lipids could serve as potential biomarkers for HFC diet-induced inflammation, and CBD reversed the elevated levels of oxidized lipids. The HFC diet was also found to enhance intestinal permeability, facilitating the entry of lipopolysaccharides (LPSs) into the circulatory system and subsequently increasing systemic inflammation. Additionally, cell metabolomic results indicated that CBD could reverse 10 important differential metabolites in LPS-induced RAW 264.7 cells. Using network pharmacology, we identified 49 core targets, and enrichment analysis revealed that arachidonic acid was the most significantly affected by CBD, which was closely associated with inflammation. Further integrated analysis focused on three key targets, including PTGS2, ALOX5, and ALOX15. Molecular docking showed high affinities between key targets and CBD, and qPCR further demonstrated that CBD could reverse the mRNA expression of these key targets in RAW 264.7 cells. Collectively, this finding integrates lipidomics and metabolomics with network pharmacology to elucidate the anti-inflammatory effects of CBD and validates key therapeutic targets.PMID:39150414 | DOI:10.1021/acs.jafc.4c04994

Ginsenoside compound K alleviates D-galactose-induced mild cognitive impairment by modulating gut microbiota-mediated short-chain fatty acid metabolism

Fri, 16/08/2024 - 12:00
Food Funct. 2024 Aug 16. doi: 10.1039/d4fo03216k. Online ahead of print.ABSTRACTThe occurrence and progression of mild cognitive impairment (MCI) are closely related to dysbiosis of the gut microbiota. Ginsenoside compound K (CK), a bioactive component of ginseng, has been shown to alleviate gut microbiota dysbiosis and neural damage. However, the mechanisms by which CK regulates the gut microbiota to improve MCI remain unexplored. In this study, an MCI mouse model induced by D-galactose was used, and 16S rRNA gene sequencing, metabolomics, transcriptomics, and integrative multi-omics analyses were employed to investigate the potential mechanisms by which CK alleviates MCI through modulation of the gut microbiota. The results demonstrated that CK repaired intestinal barrier dysfunction caused by MCI, improved blood-brain barrier (BBB) integrity, inhibited activation of microglial cells and astrocytes, and significantly ameliorated MCI. Furthermore, CK enhanced gut microbiota diversity, notably enriched beneficial bacteria such as Akkermansia, and modulated the levels of short-chain fatty acids (SCFAs), particularly increasing propionate, thereby alleviating gut microbiota dysbiosis caused by MCI. Germ-free experiments confirmed that gut microbiota is a key factor for ginsenoside CK in relieving MCI. Further investigation revealed that CK regulated the TLR4-MyD88-NF-κB signaling pathway through modulation of gut microbiota-mediated propionate metabolism, significantly reducing systemic inflammation and alleviating MCI. Our findings provide a new theoretical basis for using CK as a potential means of modulating the gut microbiota for the treatment of MCI.PMID:39150321 | DOI:10.1039/d4fo03216k

Mechanistic Interrogation on Wound Healing and Scar Removing by the Mo<sub>4/3</sub>B<sub>2-<em>x</em></sub> Nanoscaffold Revealed Regulated Amino Acid and Purine Metabolism

Fri, 16/08/2024 - 12:00
ACS Nano. 2024 Aug 16. doi: 10.1021/acsnano.4c06796. Online ahead of print.ABSTRACTWound rehabilitation is invariably time-consuming, scar formation further weakens therapeutic efficacy, and detailed mechanisms at the molecular level remain unclear. In this work, a Mo4/3B2-x nanoscaffold was fabricated and utilized for wound healing and scar removing in a mice model, while metabolomics was used to study the metabolic reprogramming of metabolome during therapy at the molecular level. The results showed that transition metal borides, called Mo4/3B2-x nanoscaffolds, could mimic superoxide dismutase and glutathione peroxidase to eliminate excess reactive oxygen species (ROS) in the wound microenvironment. During the therapeutic process, the Mo4/3B2-x nanoscaffold could facilitate the regeneration of wounds and removal of scars by regulating the biosynthesis of collagen, fibers, and blood vessels at the pathological, imaging, and molecular levels. Subsequent metabolomics study revealed that the Mo4/3B2-x nanoscaffold effectively ameliorated metabolic disorders in both wound and scar microenvironments through regulating ROS-related pathways including the amino acid metabolic process (including glycine and serine metabolism and glutamate metabolism) and the purine metabolic process. This study is anticipated to illuminate the potential clinical application of the Mo4/3B2-x nanoscaffold as an effective therapeutic agent in traumatic diseases and provide insights into the development of analytical methodology for interrogating wound healing and scar removal-related metabolic mechanisms.PMID:39150010 | DOI:10.1021/acsnano.4c06796

Genetic mosaic of the Mediterranean fig: comprehensive genomic insights from a gene bank collection

Fri, 16/08/2024 - 12:00
Physiol Plant. 2024 Jul-Aug;176(4):e14482. doi: 10.1111/ppl.14482.ABSTRACTHigh-depth whole-genome resequencing of 53 diverse fig tree genotypes yielded a rich dataset of genetic variants. We successfully identified 5,501,460 single-nucleotide polymorphisms (SNPs) and 1,228,537 insertions and deletions (InDels), providing a high-density and excellent-quality genetic map of the fig tree. We also performed a detailed population structure analysis, dividing the 53 genotypes into three geographical groups and assessing their genetic diversity and divergence. Analysis of structural variants (SVs) and copy number variations (CNVs) revealed their potential functional impact, particularly in plant-pathogen interaction and secondary metabolism. Metabolomic fingerprinting of fig genotypes uncovered extensive variation in primary metabolites and polyphenolic compounds, highlighting the influence of genotype on fruit quality traits such as nutritional content and bioactive compound composition. The genome-wide association study (GWAS) identified critical SNPs associated with fruit quality and morphological features. The discovery of significant candidate genes, such as AGL62, GDSL, and COBRA-like protein 4 genes, offers promising targets for marker-assisted selection and genome editing approaches to improve fig fruit morphological and quality traits. This extensive genomic analysis of fig trees enhances our understanding of the genetic basis of important agronomic traits and provides a rich resource for future research in this economically and nutritionally significant fruit.PMID:39149812 | DOI:10.1111/ppl.14482

Metabolomic comparison of postprandial distress syndrome patients with and without duodenal eosinophilia

Fri, 16/08/2024 - 12:00
J Pediatr Gastroenterol Nutr. 2024 Aug 16. doi: 10.1002/jpn3.12351. Online ahead of print.ABSTRACTOBJECTIVE: In functional dyspepsia patients, duodenal mucosal eosinophilia has been associated with early satiety but is not present in all patients suggesting varied pathways to symptom generation. The objective of the current study was to explore metabolic differences comparing those with duodenal mucosal eosinophilia to those without eosinophilia.METHODS: This study was conducted utilizing an existing biorepository. Patients had plasma samples obtained at the time of endoscopy. All had undergone endoscopy for dyspepsia and reported early satiety. Two groups were identified including those with peak duodenal mucosal eosinophil densities above 30/high power field (N = 28) and those below 30 (N = 16). The fasting plasma samples were analyzed by liquid chromatography/high-resolution mass spectrometry. Significant differences between groups were determined.RESULTS: The eosinophilia group demonstrated significant elevations in several gamma-glutamyl amino acids. The eosinophilia group had elevations of metabolites associated with oxidative stress including glutathione metabolites (cysteinlyglycine and cys-gly oxidized), and metabolites related to nitric oxide synthesis (arginine, citrulline, ornithine, and dimethylarginine). Eosinophilia was also associated with alterations in lipid metabolism including several long-chain acylcarnitine conjugated fatty acids. Carnitine levels were lower in the eosinophilia group. Lastly, vanillymandelate, a derivative of norepinephrine and epinephrine was elevated in the eosinophilia group.CONCLUSIONS: In patients with dyspepsia and early satiety, duodenal mucosal eosinophilia is associated with metabolites levels which are consistent with increased oxidative stress and alterations in lipid metabolism. Eosinophilia was also associated with lower carnitine levels. These alterations may contribute to pathophysiology and represent therapeutic targets.PMID:39149805 | DOI:10.1002/jpn3.12351

Bioactive metabolites identification of the foxnut and broken millet-based nutritional bar using HR-MS

Fri, 16/08/2024 - 12:00
Food Chem (Oxf). 2024 Jul 17;9:100214. doi: 10.1016/j.fochms.2024.100214. eCollection 2024 Dec 30.ABSTRACTThe by-products of the grain processing industry are a vital resource for the valorization methods in the food industry. In comparison to the whole grain, the broken kernels and seeds own similar nutrient and bioactive compounds having multifaceted health properties. This study aims to develop a nutritional bar by utilizing the by-products from barnyard millet and foxnut with added sweeteners. Furthermore, high-resolution mass spectrometry (HR-MS) metabolomics was carried out in positive and negative both ion modes to identify the major bioactive compounds formed in the matrix of the best-optimized valorized bar. The formulation of the bar having 15 % foxnut flour and the barnyard flour each, was elucidated highest rheological and sensory scores. A sum of 29 bioactive metabolites has been observed in the obtained metabolome. Major metabolites were palmitoyl serinol, glycitein, persin, bufagargarizin, apigenin, carvone, etc. covering a wide area in the mass spectrum. The therapeutic value of these compounds is heart health promotion, anti-inflammatory, anti-carcinogenic, anti-diabetic, anti-microbial, etc. This work highlights the bioactivity of the valorized nutritional bar employing robust and accurate tool of mass spectrometry. The developed snack is a functional food for the consumers.PMID:39149574 | PMC:PMC11324833 | DOI:10.1016/j.fochms.2024.100214

<em>Lactococcus</em> strains with psychobiotic properties improve cognitive and mood alterations in aged mice

Fri, 16/08/2024 - 12:00
Front Nutr. 2024 Aug 1;11:1439094. doi: 10.3389/fnut.2024.1439094. eCollection 2024.ABSTRACTAging often accompanies cognitive and mood disturbances. Emerging evidence indicates that specific probiotics mitigate cognitive and mood dysfunctions. Strains within Lactococcus, a subgroup of probiotics, including Lactococcus lactis and Lactococcus cremoris are shown beneficial effects on brain functions via the gut microbiota-brain axis (GBA). Our previous study identified two Lactococcus strains (L. lactis WHH2078 and L. cremoris WHH2080) with the ability to promote the secretion of gut 5-hydroxytryptophan (5-HTP), the precursor of the GBA mediator 5-hydroxytryptamine (5-HT). In this study, the modulatory effects of WHH2078 and WHH2080 on cognitive and mood alternations were investigated in aged mice. Oral administration of WHH2078 and WHH2080 (1 × 109 CFU/mL/day) in aged mice (12-month-old) for 12 weeks significantly improved cognitive and depressive-and anxiety-like behaviors. The neuronal loss, the 5-HT metabolism dysfunction, and the neuroinflammation in the hippocampus of aged mice were restored by WHH2078 and WHH2080. the disturbances in the serum tryptophan metabolism in aged mice were unveiled by metabolomics, notably with decreased levels of 5-HT and 5-HTP, and increased levels of kynurenine, 3-hydroxykynurenine, and indolelactic acid, which were reversed by WHH2078 and WHH2080. Regarding the gut microbial community, WHH2078 and WHH2080 restored the increased abundance of Firmicutes, Desulfobacterota, and Deferribacterota and the decreased abundance of Bacteroidota and Actinobacteriota in aged mice. The beneficial effects of the two strains were linked to the modulation of 5-HT metabolism and gut microbiota. Our findings point to the potential role of Lactococcus strains with 5-HTP-promoting abilities as therapeutic approaches for age-related cognitive and mood disorders.PMID:39149553 | PMC:PMC11324604 | DOI:10.3389/fnut.2024.1439094

Comparative omics directed gene discovery and rewiring for normal temperature-adaptive red pigment synthesis by polar psychrotrophic fungus <em>Geomyces</em> sp. WNF-15A

Fri, 16/08/2024 - 12:00
Synth Syst Biotechnol. 2024 Jul 16;9(4):842-852. doi: 10.1016/j.synbio.2024.07.002. eCollection 2024 Dec.ABSTRACTThe Antarctic fungus Geomyces sp. WNF-15A can produce high-quality red pigments (AGRP) with good prospects for the use in food and cosmetic area. However, efficient AGRP synthesis relies on low-temperature and thus limits its industrial development. Here genome sequencing and comparative analysis were performed on the wild-type versus to four mutants derived from natural mutagenesis and transposon insertion mutation. Eleven mutated genes were identified from 2309 SNPs and 256 Indels. A CRISPR-Cas9 gene-editing system was established for functional analysis of these genes. Deficiency of scaffold1.t692 and scaffold2.t704 with unknown functions highly improved AGRP synthesis at all tested temperatures. Of note, the two mutants produced comparable levels of AGRP at 20 °C to the wild-type at 14 °C. They also broke the normal-temperature limitation and effectively synthesized AGRP at 25 °C. Comparative metabolomic analysis revealed that deficiency of scaffold1.t692 improved AGRP synthesis by regulation of global metabolic pathways especially downregulation of the competitive pathways. Knockout of key genes responsible for the differential metabolites confirmed the metabolomic results. This study shows new clues for cold-adaptive regulatory mechanism of polar fungi. It also provides references for exploitation and utilization of psychrotrophic fungal resources.PMID:39149535 | PMC:PMC11326490 | DOI:10.1016/j.synbio.2024.07.002

Multi-Omics Profiles of Chronic Low Back Pain and Fibromyalgia - Study Protocol

Fri, 16/08/2024 - 12:00
Res Sq [Preprint]. 2024 Jul 31:rs.3.rs-4669838. doi: 10.21203/rs.3.rs-4669838/v1.ABSTRACTBackground Chronic low back pain (CLBP) and fibromyalgia (FM) are leading causes of suffering, disability, and social costs. Current pharmacological treatments do not target molecular mechanisms driving CLBP and FM, and no validated biomarkers are available, hampering the development of effective therapeutics. Omics research has the potential to substantially advance our ability to develop mechanism-specific therapeutics by identifying pathways involved in the pathophysiology of CLBP and FM, and facilitate the development of diagnostic, predictive, and prognostic biomarkers. We will conduct a blood and urine multi-omics study in comprehensively phenotyped and clinically characterized patients with CLBP and FM. Our aims are to identify molecular pathways potentially involved in the pathophysiology of CLBP and FM that would shift the focus of research to the development of target-specific therapeutics, and identify candidate diagnostic, predictive, and prognostic biomarkers. Methods We are conducting a prospective cohort study of adults ≥18 years of age with CLBP (n=100) and FM (n=100), and pain-free controls (n=200). Phenotyping measures include demographics, medication use, pain-related clinical characteristics, physical function, neuropathiccomponents (quantitative sensory tests and DN4 questionnaire), pain facilitation (temporal summation), and psychosocial function as moderator. Blood and urine samples are collected to analyze metabolomics, lipidomics and proteomics. We will integrate the overall omics data to identify common mechanisms and pathways, and associate multi-omics profiles to pain-related clinical characteristics, physical function, indicators of neuropathic pain, and pain facilitation, with psychosocial variables as moderators. Discussion Our study addresses the need for a better understanding of the molecular mechanisms underlying chronic low back pain and fibromyalgia. Using a multi-omics approach, we hope to identify converging evidence for potential targets of future therapeutic developments, as well as promising candidate biomarkers for further investigation by biomarker validation studies. We believe that accurate patient phenotyping will be essential for the discovery process, as both conditions are characterized by high heterogeneity and complexity, likely rendering molecular mechanisms phenotype specific.PMID:39149502 | PMC:PMC11326421 | DOI:10.21203/rs.3.rs-4669838/v1

Pages