PubMed
Haemonchus contortus alters distribution and utilization of protein and amino acids in different tissues of host sheep
Vet Parasitol. 2024 Aug 14;331:110289. doi: 10.1016/j.vetpar.2024.110289. Online ahead of print.ABSTRACTThe objective was to determine host animal protein/amino acid redistribution and use among the abomasum, duodenum and muscle of sheep infected with Haemonchus contortus. Sixteen male Ujumqin sheep (32.4 ± 3.9 kg) were dewormed and randomly assigned to two groups, infected or not infected with H. contortus (GIN and CON). The GIN group had lower (P < 0.05) dry matter intake, average daily gain, and live body weight than CON, with extensive focal infiltration of lymphocytes in the lamina propria and bottom of the abomasal epithelium. In the abomasum and duodenum, there were 100 and 220 genes, respectively, that were up-regulated, whereas 56 and 149 were down-regulated. In the abomasum, the most enriched KEGG pathways were related to immunity and inflammation reaction, including: viral protein interaction with cytokine and cytokine receptor (P = 0.017), influenza A (P = 0.030), IL-17 signaling pathway (P = 0.030). In the duodenum, KEGG pathways were more enriched in nutrient metabolism, including pancreatic secretion (P < 0.001), protein digestion and absorption (P < 0.001), graft-versus-host disease (P = 0.004). Furthermore, most genes related with the above KEGG pathways were increased in the abomasum but decreased in the duodenum. Amino acid profiles in abomasum and duodenum of CON and GIN groups were clustered in a partial least-squares discriminant analysis model, with significant changes in 36 and 19 metabolites in abomasal and duodenal chyme, respectively. Further confirmed by transcriptome-targeted metabolome association analysis, GIN mainly enhanced metabolism of arginine and sulphur amino acids in abomasum and those metabolic pathways were associated. Meanwhile, GIN mainly decreased pyruvate related amino acid metabolism in duodenum. Moreover, concentrations of Arg (P = 0.036), His (P = 0.027), and Cys (P = 0.046) in longissimus thoracis et lumborum were decreased in GIN, whereas concentrations of Gly (P = 0.012) and Ala (P = 0.046) were increased. In conclusion, H. contortus enhanced metabolism of arginine and sulphur amino acids in the abomasum; decreased pyruvate metabolism in the duodenum; and drove more protein/amino acids for abomasal tissues to resist physical and immune damage, reducing protein and amino acids in duodenum and muscle for support host growth. Specific nutrients (such like arginine, histidine, and cysteine) may play important role in control gastrointestinal nematode infection for ruminant.PMID:39173409 | DOI:10.1016/j.vetpar.2024.110289
Visual observation of polystyrene nano-plastics in grape seedlings of Thompson Seedless and assessing their effects via transcriptomics and metabolomics
J Hazard Mater. 2024 Aug 21;478:135550. doi: 10.1016/j.jhazmat.2024.135550. Online ahead of print.ABSTRACTMicro/nano-plastics (MNPs) are emerging non-point source pollutants that have garnered increasing attention owing to their threat to ecosystems. Studies on the effects of MNPs on horticultural crops are scarce. Specifically, whether MNPs can be absorbed and transported by grapevines have not been reported. To fill this gap, we added polystyrene nanoplastics (PS-NPs, 100 nm) to a hydroponic environment and observed their distribution in grape seedlings of Thompson Seedless (TS, Vitis vinifera L.). After 15 d of exposure, plastic nanospheres were detected on the cell walls of the roots, stems, and leaves using confocal microscopy and scanning electron microscopy. This indicated that PS-NPs can also be absorbed by the root system through the epidermis-cortex interface in grapevines and transported upward along the xylem conduit. Furthermore, we analyzed the molecular response mechanisms of TS grapes to the PS-NPs. Through the measurement of relevant indicators and combined omics analysis, we found that plant hormone signal transduction, flavonoid and flavonol biosynthesis, phenylpropanoid biosynthesis, and MAPK signaling pathway biosynthesis played crucial roles in its response to PS-NPs. The results not only revealed the potential risk of MNPs being absorbed by grapevines and eventually entering the food chain but also provided valuable scientific evidence and data for the assessment of plant health and ecological risk.PMID:39173388 | DOI:10.1016/j.jhazmat.2024.135550
Ionic titanium is expected to improve the nutritional quality of Tartary buckwheat sprouts through flavonoids and amino acid metabolism
Food Chem. 2024 Aug 21;461:140907. doi: 10.1016/j.foodchem.2024.140907. Online ahead of print.ABSTRACTTartary buckwheat sprouts are highly valued by consumers for their superior nutritional content. Ionic titanium (Ti) has been shown to enhance crop growth and improve nutritional quality. However, there is limited research on the impact of ionic Ti on the nutritional quality of Tartary buckwheat sprouts. This study cultivated Tartary buckwheat sprouts with ionic Ti and found that the high concentration of ionic Ti significantly increased the contents of chlorophyll a, chlorophyll b, and carotenoids (increased by 25.5%, 27.57%, and 15.11%, respectively). The lower concentration of ionic Ti has a higher accumulation of total flavonoids and total polyphenols. Metabolomics analysis by LC-MS revealed 589 differentially expressed metabolites and 54 significantly different metabolites, enriching 82 metabolic pathways, especially including amino acid biosynthesis and flavonoid biosynthesis. This study shows that ionic Ti can promote the growth of Tartary buckwheat sprouts, improve nutritional quality, and have huge development potential in food production.PMID:39173266 | DOI:10.1016/j.foodchem.2024.140907
Long-term exposure to advanced lipid peroxidation end products impairs cognitive function through microbiota-gut-brain axis
Food Chem. 2024 Aug 15;461:140864. doi: 10.1016/j.foodchem.2024.140864. Online ahead of print.ABSTRACTThe frequent intake of ultra-processed, heat-processed, and fat-enriched foods rich in dietary advanced lipoxidation end-products (ALEs) has been correlated with cognitive decline; however, the underlying mechanisms of action remain unexplored. This study investigated the impact of a 12-month dietary exposure to ALEs on learning, memory, and Aβ1-42 accumulation in mice, with a focus on the AMPK/SIRT1 signaling pathway and ADAM10 expression. The gut microbiota and metabolomic profiles revealed ALEs-induced gut dysbiosis and cognitive impairment, highlighting modulation through the microbiota-gut-brain axis. Key findings include increased pathogenic bacteria and decreased beneficial bacteria, linked to metabolite profile changes that affect neurotoxic Aβ1-42 peptide accumulation. This long-term comprehensive study underscores the need for dietary guidelines to reduce ALE intake and mitigate neurodegenerative disease risk, highlighting the intricate interplay between diet, gut microbiota, and cognitive health.PMID:39173255 | DOI:10.1016/j.foodchem.2024.140864
Sulforaphane modulates some stress parameters in TPT-exposed Cyprinus carpio in relation to liver metabolome
Ecotoxicol Environ Saf. 2024 Aug 21;284:116882. doi: 10.1016/j.ecoenv.2024.116882. Online ahead of print.ABSTRACTThis study aimed to investigate the protective effect of sulforaphane (SFN) on liver injury induced by triphenyltin (TPT) in Cyprinus carpio (C. carpio). The fish (average weight of 56.9±0.4 g) were divided into 4 groups with four replicates: the control, TPT, SFN+TPT and SFN groups. Twenty fish were selected from each tank and cultured for 8 weeks. Then, serum and liver samples were collected for physiological, biochemical and metabolomic analyses. In the present study, TPT downregulated the expression of the lysozyme gene, upregulated HSP70 and Hsp90 gene expression, and decreased the activities of serum antioxidant enzymes (SOD, CAT, and GPX). However, dietary SFN alleviated oxidative stress, and prevented changes in immune genes. Metabolomic analysis revealed that TPT exposure changed key metabolites in the main phenylalanine, fatty acid and glycerophosphatide metabolic pathways, which are related to inflammation, oxidative stress and immunity and might also lead to an imbalance of liver energy and lipid metabolism. Dietary SFN promoted amino acid metabolism and increased metabolites related to immunity, anti-inflammation, antioxidation, and protein synthesis in liver of C. carpio. In summary, dietary SFN supplementation reversed TPT-induced decreases in immunity and oxidative stress and regulated amino acid metabolism, lipid metabolism, inflammation and immunity-related metabolic pathways.PMID:39173223 | DOI:10.1016/j.ecoenv.2024.116882
Dysregulation of cerebrospinal fluid metabolism profiles in spinal muscular atrophy patients: a case control study
Ital J Pediatr. 2024 Aug 22;50(1):154. doi: 10.1186/s13052-024-01726-6.ABSTRACTBACKGROUND: Spinal muscular atrophy (SMA) is a neurodegenerative disorder. Although prior studies have investigated the metabolomes of SMA in various contexts, there is a gap in research on cerebrospinal fluid (CSF) metabolomics compared to healthy controls. CSF metabolomics can provide insights into central nervous system function and patient outcomes. This study aims to investigate CSF metabolite profiles in untreated SMA patients to enhance our understanding of SMA metabolic dysregulation.METHODS: This case control study included 15 SMA patients and 14 control subjects. CSF samples were collected, and untargeted metabolomics was conducted to detect metabolites in SMA and control groups.RESULTS: A total of 118 metabolites abundance were significantly changed between the SMA and control groups. Of those, 27 metabolites with variable importance for the projection (VIP) ≥ 1.5 were identified. The top 5 differential metabolites were N-acetylneuraminic acid (VIP = 2.38, Fold change = 0.43, P = 5.49 × 10-5), 2,3-dihydroxyindole (VIP = 2.33, Fold change = 0.39, P = 1.81 × 10-4), lumichrome (VIP = 2.30, Fold change = 0.48, P = 7.90 × 10-5), arachidic acid (VIP = 2.23, Fold change = 10.79, P = 6.50 × 10-6), and 10-hydroxydecanoic acid (VIP = 2.23, Fold change = 0.60, P = 1.44 × 10-4). Cluster analysis demonstrated that the differentially metabolites predominantly clustered within two main categories: protein and amino acid metabolism, and lipid metabolism.CONCLUSIONS: The findings highlight the complexity of SMA, with widespread effects on multiple metabolic pathways, particularly in amino acid and lipid metabolism. N-acetylneuraminic acid may be a potential treatment for functional improvement in SMA. The exact mechanisms and potential therapeutic targets associated with metabolic dysregulation in SMA require further investigation.PMID:39175089 | DOI:10.1186/s13052-024-01726-6
Molecular mechanisms regulating glucose metabolism in quinoa (Chenopodium quinoa Willd.) seeds under drought stress
BMC Plant Biol. 2024 Aug 23;24(1):796. doi: 10.1186/s12870-024-05510-w.ABSTRACTBACKGROUND: Abiotic stress seriously affects the growth and yield of crops. It is necessary to search and utilize novel abiotic stress resistant genes for 2.0 breeding programme in quinoa. In this study, the impact of drought stress on glucose metabolism were investigated through transcriptomic and metabolomic analyses in quinoa seeds. Candidate drought tolerance genes on glucose metabolism pathway were verified by qRT-PCR combined with yeast expression system.RESULTS: From 70 quinoa germplasms, drought tolerant material M059 and drought sensitive material M024 were selected by comprehensive evaluation of drought resistance. 7042 differentially expressed genes (DEGs) were indentified through transcriptomic analyses. Gene Ontology (GO) analysis revealed that these DEGs were closely related to carbohydrate metabolic process, phosphorus-containing groups, and intracellular membrane-bounded organelles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis detected that DEGs were related to pathways involving carbohydrate metabolisms, glycolysis and gluconeogenesis. Twelve key differentially accumulated metabolites (DAMs), (D-galactose, UDP-glucose, succinate, inositol, D-galactose, D-fructose-6-phosphate, D-glucose-6-phosphate, D-glucose-1-phosphate, dihydroxyacetone phosphate, ribulose-5-phosphate, citric acid and L-malate), and ten key candidate DEGs (CqAGAL2, CqINV, CqFrK7, CqCELB, Cqbg1x, CqFBP, CqALDO, CqPGM, CqIDH3, and CqSDH) involved in drought response were identified. CqSDH, CqAGAL2, and Cqβ-GAL13 were candidate genes that have been validated in both transcriptomics and yeast expression screen system.CONCLUSION: These findings provide a foundation for elucidating the molecular regulatory mechanisms governing glucose metabolism in quinoa seeds under drought stress, providing insights for future research exploring responses to drought stress in quinoa.PMID:39174961 | DOI:10.1186/s12870-024-05510-w
Dysregulated arginine metabolism in precursor B-cell acute lymphoblastic leukemia in children: a metabolomic study
BMC Pediatr. 2024 Aug 22;24(1):540. doi: 10.1186/s12887-024-05015-3.ABSTRACTBACKGROUND: Precursor B-cell acute lymphoblastic leukemia (B-ALL) is the most common cancers in children. Failure of induction chemotherapy is a major factor leading to relapse and death in children with B-ALL. Given the importance of altered metabolites in the carcinogenesis of pediatric B-ALL, studying the metabolic profile of children with B-ALL during induction chemotherapy and in different minimal residual disease (MRD) status may contribute to the management of pediatric B-ALL.METHODS: We collected paired peripheral blood plasma samples from children with B-ALL at pre- and post-induction chemotherapy and analyzed the metabolomic profiling of these samples by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). Healthy children were included as controls. We selected metabolites that were depleted in pediatric B-ALL and analyzed the concentrations in pediatric B-ALL samples. In vitro, we study the effects of the selected metabolites on the viability of ALL cell lines and the sensitivity to conventional chemotherapeutic agents in ALL cell lines.RESULTS: Forty-four metabolites were identified with different levels between groups. KEGG pathway enrichment analyses revealed that dysregulated linoleic acid (LA) metabolism and arginine (Arg) biosynthesis were closely associated with pediatric B-ALL. We confirmed that LA and Arg were decreased in pediatric B-ALL samples. The treatment of LA and Arg inhibited the viability of NALM-6 and RS4;11 cells in a dose-dependent manner, respectively. Moreover, Arg increased the sensitivity of B-ALL cells to L-asparaginase and daunorubicin.CONCLUSION: Arginine increases the sensitivity of B-ALL cells to the conventional chemotherapeutic drugs L-asparaginase and daunorubicin. This may represent a promising therapeutic approach.PMID:39174946 | DOI:10.1186/s12887-024-05015-3
Study the local metabolic changes of aneurysms through microcatheter sampling
Sci Rep. 2024 Aug 22;14(1):19552. doi: 10.1038/s41598-024-70309-6.ABSTRACTIntracranial aneurysm is the primary cause of nontraumatic subarachnoid hemorrhage. To assess aneurysm metabolism, we present a method of intra-operatively collecting blood samples from the aneurysm neck, as well as the proximal and distal responsible vessels, using microcatheters. Through these paired comparisons, we can eliminate the interpatient variation usually observed in plasma samples taken from the peripheral vein. We utilized 39 plasma samples from 13 intracranial patients to characterize the metabolite profiles using untargeted liquid chromatography-mass spectrometry. Our findings revealed that L-tyrosine is upregulated at relatively high levels at the aneurysm neck than the proximal and distal aneurysm, whereas phenylpyruvic acid, L-cystine, and L-ornithine are downregulated. Based on this, there was also a significant decrease in arginine within small aneurysm of the internal carotid artery. The 6-month follow-up indicated that patients who experienced good recovery had lower levels of biliverdin, bilirubin, and metabolites of coenzyme Q within the aneurysm. In conclusion, our investigation provides a comprehensive overview of plasma metabolites in patients with intracranial aneurysms, shedding light on potential pathogenetic mechanisms in unruptured intracranial aneurysms. Moreover, the study proposes innovative ideas for establishing postoperative follow-up timelines for flow diverter devices.PMID:39174658 | DOI:10.1038/s41598-024-70309-6
The diagnostic potential of urine in paediatric patients undergoing initial treatment for tuberculous meningitis
Sci Rep. 2024 Aug 22;14(1):19471. doi: 10.1038/s41598-024-70419-1.ABSTRACTTuberculous meningitis (TBM)-the extrapulmonary form of tuberculosis, is the most severe complication associated with tuberculosis, particularly in infants and children. The gold standard for the diagnosis of TBM requires cerebrospinal fluid (CSF) through lumbar puncture-an invasive sample collection method, and currently available CSF assays are often not sufficient for a definitive TBM diagnosis. Urine is metabolite-rich and relatively unexplored in terms of its potential to diagnose neuroinfectious diseases. We used an untargeted proton magnetic resonance (1H-NMR) metabolomics approach to compare the urine from 32 patients with TBM (stratified into stages 1, 2 and 3) against that from 39 controls in a South African paediatric cohort. Significant spectral bins had to satisfy three of our four strict cut-off quantitative statistical criteria. Five significant biological metabolites were identified-1-methylnicotinamide, 3-hydroxyisovaleric acid, 5-aminolevulinic acid, N-acetylglutamine and methanol-which had no correlation with medication metabolites. ROC analysis revealed that methanol lacked diagnostic sensitivity, but the other four metabolites showed good diagnostic potential. Furthermore, we compared mild (stage 1) TBM and severe (stages 2 and 3) TBM, and our multivariate metabolic model could successfully classify severe but not mild TBM. Our results show that urine can potentially be used to diagnose severe TBM.PMID:39174657 | DOI:10.1038/s41598-024-70419-1
Integrated-omics analysis with explainable deep networks on pathobiology of infant bronchiolitis
NPJ Syst Biol Appl. 2024 Aug 22;10(1):93. doi: 10.1038/s41540-024-00420-x.ABSTRACTBronchiolitis is the leading cause of infant hospitalization. However, the molecular networks driving bronchiolitis pathobiology remain unknown. Integrative molecular networks, including the transcriptome and metabolome, can identify functional and regulatory pathways contributing to disease severity. Here, we integrated nasopharyngeal transcriptome and metabolome data of 397 infants hospitalized with bronchiolitis in a 17-center prospective cohort study. Using an explainable deep network model, we identified an omics-cluster comprising 401 transcripts and 38 metabolites that distinguishes bronchiolitis severity (test-set AUC, 0.828). This omics-cluster derived a molecular network, where innate immunity-related metabolites (e.g., ceramides) centralized and were characterized by toll-like receptor (TLR) and NF-κB signaling pathways (both FDR < 0.001). The network analyses identified eight modules and 50 existing drug candidates for repurposing, including prostaglandin I2 analogs (e.g., iloprost), which promote anti-inflammatory effects through TLR signaling. Our approach facilitates not only the identification of molecular networks underlying infant bronchiolitis but the development of pioneering treatment strategies.PMID:39174575 | DOI:10.1038/s41540-024-00420-x
Alveolar epithelial cells mitigate neutrophilic inflammation in lung injury through regulating mitochondrial fatty acid oxidation
Nat Commun. 2024 Aug 22;15(1):7241. doi: 10.1038/s41467-024-51683-1.ABSTRACTType 2 alveolar epithelial (AT2) cells of the lung are fundamental in regulating alveolar inflammation in response to injury. Impaired mitochondrial long-chain fatty acid β-oxidation (mtLCFAO) in AT2 cells is assumed to aggravate alveolar inflammation in acute lung injury (ALI), yet the importance of mtLCFAO to AT2 cell function needs to be defined. Here we show that expression of carnitine palmitoyltransferase 1a (CPT1a), a mtLCFAO rate limiting enzyme, in AT2 cells is significantly decreased in acute respiratory distress syndrome (ARDS). In mice, Cpt1a deletion in AT2 cells impairs mtLCFAO without reducing ATP production and alters surfactant phospholipid abundance in the alveoli. Impairing mtLCFAO in AT2 cells via deleting either Cpt1a or Acadl (acyl-CoA dehydrogenase long chain) restricts alveolar inflammation in ALI by hindering the production of the neutrophilic chemokine CXCL2 from AT2 cells. This study thus highlights mtLCFAO as immunometabolism to injury in AT2 cells and suggests impaired mtLCFAO in AT2 cells as an anti-inflammatory response in ARDS.PMID:39174557 | DOI:10.1038/s41467-024-51683-1
Medium-Chain Chlorinated Paraffins Trigger Thyroid Hormone Synthesis and Interfere with Mitochondrial Function in the Thyroid Gland
Environ Sci Technol. 2024 Aug 22. doi: 10.1021/acs.est.4c01341. Online ahead of print.ABSTRACTMedium-chain chlorinated paraffins (MCCPs, C14-C17) are frequently detected in diverse environmental media. It has been proposed to be listed in Annex A of the Convention on Persistent Organic Pollutants in 2023. Although MCCPs are a crucial health concern, their toxicity remains unclear. This study investigated the toxic effects of MCCPs (0.1-50 mg/kg body weight/day) on the thyroid gland of female Sprague-Dawley rats and characterized the potential toxic pathways via transcriptomics and metabolomics approaches. MCCPs exposure caused histopathological changes to the endoplasmic reticula and mitochondria in thyroid follicular cells at a dose of 50 mg/kg bw/d and increased serum thyrotropin-releasing hormone, thyroid-stimulating hormones, and thyroxine when exposed to a higher dose of MCCPs. Transcriptomic analysis indicated the excessive expression of key genes related to thyroid hormone synthesis induced by MCCPs. Integrating the dual-omics analysis revealed mitochondrial dysfunction of the thyroid by mediating fatty acid oxidation, Kreb's cycle, and oxidative phosphorylation. Significant metabolic toxicity on the thyroid might be linked to the characteristics of the chlorine content of MCCPs. This study revealed the toxicity of MCCPs to the thyroid gland via triggering thyroid hormone synthesis and interfering with mitochondrial function, which can provide new insights into the modes of action and mechanism-based risk assessment of MCCPs.PMID:39172767 | DOI:10.1021/acs.est.4c01341
Characterization of Entamoeba fatty acid elongases; validation as targets and provision of promising leads for new drugs against amebiasis
PLoS Pathog. 2024 Aug 22;20(8):e1012435. doi: 10.1371/journal.ppat.1012435. eCollection 2024 Aug.ABSTRACTEntamoeba histolytica is a protozoan parasite belonging to the phylum Amoebozoa that causes amebiasis, a global public health problem. E. histolytica alternates its form between a proliferative trophozoite and a dormant cyst. Trophozoite proliferation is closely associated with amebiasis symptoms and pathogenesis whereas cysts transmit the disease. Drugs are available for clinical use; however, they have issues of adverse effects and dual targeting of disease symptoms and transmission remains to be improved. Development of new drugs is therefore urgently needed. An untargeted lipidomics analysis recently revealed structural uniqueness of the Entamoeba lipidome at different stages of the parasite's life cycle involving very long (26-30 carbons) and/or medium (8-12 carbons) acyl chains linked to glycerophospholipids and sphingolipids. Here, we investigated the physiology of this unique acyl chain diversity in Entamoeba, a non-photosynthetic protist. We characterized E. histolytica fatty acid elongases (EhFAEs), which are typically components of the fatty acid elongation cycle of photosynthetic protists and plants. An approach combining genetics and lipidomics revealed that EhFAEs are involved in the production of medium and very long acyl chains in E. histolytica. This approach also showed that the K3 group herbicides, flufenacet, cafenstrole, and fenoxasulfone, inhibited the production of very long acyl chains, thereby impairing Entamoeba trophozoite proliferation and cyst formation. Importantly, none of these three compounds showed toxicity to a human cell line; therefore, EhFAEs are reasonable targets for developing new anti-amebiasis drugs and these compounds are promising leads for such drugs. Interestingly, in the Amoebazoan lineage, gain and loss of the genes encoding two different types of fatty acid elongase have occurred during evolution, which may be relevant to parasite adaptation. Acyl chain diversity in lipids is therefore a unique and indispensable feature for parasitic adaptation of Entamoeba.PMID:39172749 | DOI:10.1371/journal.ppat.1012435
Microbiome and Metabolome Restoration After Administration of Fecal Microbiota, Live-jslm (REBYOTA) for Preventing Recurrent Clostridioides difficile Infection
J Infect Dis. 2024 Aug 22:jiae418. doi: 10.1093/infdis/jiae418. Online ahead of print.ABSTRACTBACKGROUND: Microbiota-based treatments are effective in preventing recurrent Clostridioides difficile infection (rCDI). Fecal microbiota, live-jslm (REBYOTA®; RBL, previously RBX2660) was shown to prevent rCDI in a phase 3, randomized, double-blinded placebo controlled clinical trial (PUNCH™ CD3).METHODS: Stool samples from participants in PUNCH™ CD3 who received a single blinded dose of rectally administered RBL or placebo were sequenced to determine microbial community composition and calculate the Microbiome Health Index for post-antibiotic dysbiosis (MHI-A). The composition of bile acids (BAs) in the same samples was quantified by liquid chromatography mass spectrometry. Relationships between BA composition and microbiota community structure and correlations with treatment outcomes were assessed.RESULTS: Before administration, Gammaproteobacteria and Bacilli dominated the microbiota community and primary BAs were more prevalent than secondary BAs. Clinical success after administration correlated with shifts to predominantly Bacteroidia and Clostridia, a significant increase in MHI-A, and a shift from primary to secondary BAs. Several microbiota and BA changes were more extensive in RBL-treated responders compared to placebo-treated responders, and microbiota changes correlated with BA changes.CONCLUSIONS: Clinical response and RBL administration were associated with significant restoration of microbiota and BA composition.CLINICAL TRIALS REGISTRATION: NCT03244644.PMID:39172632 | DOI:10.1093/infdis/jiae418
Anti-ageing interventions for the treatment of cardiovascular disease
Cardiovasc Res. 2024 Aug 22:cvae177. doi: 10.1093/cvr/cvae177. Online ahead of print.ABSTRACTAs the global demographic landscape continues to shift towards an aged population, so does the medical and socioeconomic burden of cardiovascular diseases. Indeed, ageing is one of, if not the, key risk factor for the development of cardiovascular diseases. However, there are currently no approved cardiovascular therapeutics that primarily target the molecular and cellular mechanisms underlying the ageing process itself. In this review, we present the potential of emerging anti-ageing strategies, including epigenetic rejuvenation, metabolic reprogramming, autophagy activation, as well as senolytic and anti-inflammatory therapies, in delaying or reversing the development of age-related cardiovascular disorders, while considering potential sex differences. In doing so, we implicate cellular ageing processes in the pathogenesis of several prevalent cardiovascular diseases, such as atherosclerosis, hypertension, various types of cardiomyopathies (including its hypertrophic, ischemic, dilated, diabetic, and arrhythmogenic forms) and heart failure, particularly that with preserved ejection fraction. Finally, we outline future challenges and steps needed for the implementation of these novel anti-ageing strategies in the clinical setting, with the aim of challenging the long-held notion of ageing as a 'nonmodifiable' risk factor for cardiovascular diseases.PMID:39172536 | DOI:10.1093/cvr/cvae177
UV-exposure decreases antimicrobial activities of a grapevine cane extract against Plasmopara viticola and Botrytis cinerea as a consequence of stilbene modifications-a kinetic study
Pest Manag Sci. 2024 Aug 22. doi: 10.1002/ps.8367. Online ahead of print.ABSTRACTBACKGROUND: Stilbenoid extracts, such as those originating from grapevine by-products (e.g. canes), are of interest for use as biopesticides in vineyard owing to their antimicrobial activities. However, stilbenoids are unstable in the environment, especially under light. This study aimed to chemically characterize the effect of UV light on stilbenoids present in a grapevine cane extract (CE), and to evaluate the antimicrobial activities against two major grapevine pathogens (Plasmopara viticola and Botrytis cinerea) of grapevine extracts exposed to UV.RESULTS: Treatment with UV (365 nm) on a grapevine CE led to degradation of stilbenoids (up to 71% after 1 h). The stilbenoid stability depended on their chemical structure: only those possessing CC, as trans-resveratrol and trans-ε-viniferin, were affected with first their isomerization and secondly their oxidation/cyclization. As a consequence, UV-exposed extracts (UV-CEs) showed reduced antimicrobial activities against the two pathogens (mycelium and spores). For instance, regarding P. viticola, an UV-CE exposed during 4 h showed an almost total loss of its activity on oomycete development and a 2.4-fold inhibition of zoospore mobility in comparison to CE. For B. cinerea, the inhibition capacity of the same UV-CE was reduced by only 1.1-fold on mycelial development and by 3.2-fold on conidial germination compared to CE.CONCLUSION: UV light triggered modifications on the structure of bioactive stilbenoids, resulting in losses of their antimicrobial activities. Photoprotection of stilbenoids has to be considered in the perspective of using them in vineyards as biopesticides. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.PMID:39172057 | DOI:10.1002/ps.8367
Tracer-based metabolomics for profiling nitric oxide metabolites in a 3D microvessels-on-chip model
FASEB J. 2024 Aug 31;38(16):e70005. doi: 10.1096/fj.202400553R.ABSTRACTEndothelial dysfunction, prevalent in cardiovascular diseases (CVDs) and linked to conditions like diabetes, hypertension, obesity, renal failure, or hypercholesterolemia, is characterized by diminished nitric oxide (NO) bioavailability-a key signaling molecule for vascular homeostasis. Current two-dimensional (2D) in vitro studies on NO synthesis by endothelial cells (ECs) lack the crucial laminar shear stress, a vital factor in modulating the NO-generating enzyme, endothelial nitric oxide synthase (eNOS), under physiological conditions. Here we developed a tracer-based metabolomics approach to measure NO-specific metabolites with mass spectrometry (MS) and show the impact of fluid flow on metabolic parameters associated with NO synthesis using 2D and 3D platforms. Specifically, we tracked the conversion of stable-isotope labeled NO substrate L-Arginine to L-Citrulline and L-Ornithine to determine eNOS activity. We demonstrated clear responses in human coronary artery endothelial cells (HCAECs) cultured with 13C6, 15N4-L-Arginine, and treated with eNOS stimulator, eNOS inhibitor, and arginase inhibitor. Analysis of downstream metabolites, 13C6, 15N3 L-Citrulline and 13C5, 15N2 L-Ornithine, revealed distinct outcomes. Additionally, we evaluated the NO metabolic status in static 2D culture and 3D microvessel models with bidirectional and unidirectional fluid flow. Our 3D model exhibited significant effects, particularly in microvessels exposed to the eNOS stimulator, as indicated by the 13C6, 15N3 L-Citrulline/13C5, 15N2 L-Ornithine ratio, compared to the 2D culture. The obtained results indicate that the 2D static culture mimics an endothelial dysfunction status, while the 3D model with a unidirectional fluid flow provides a more representative physiological environment that provides a better model to study endothelial dysfunction.PMID:39171967 | DOI:10.1096/fj.202400553R
The plant terpenes DMNT and TMTT function as signaling compounds that attract Asian corn borer (Ostrinia furnacalis) to maize plants
J Integr Plant Biol. 2024 Aug 22. doi: 10.1111/jipb.13763. Online ahead of print.ABSTRACTDuring their co-evolution with herbivorous insects, plants have developed multiple defense strategies that resist pests, such as releasing a blend of herbivory-induced plant volatiles (HIPVs) that repel pests or recruit their natural enemies. However, the responses of insects to HIPVs in maize (Zea mays L.) are not well understood. Here, we demonstrate that the Asian corn borer (ACB, Ostrinia furnacalis), a major insect pest of maize, shows a preference for maize pre-infested with ACB larvae rather than being repelled by these plants. Through combined transcriptomic and metabolomics analysis of ACB-infested maize seedlings, we identified two substances that explain this behavior: (E)-4,8-dimethylnona-1,3,7-triene (DMNT) and (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT). DMNT and TMTT attracted ACB larvae, and knocking out the maize genes responsible for their biosynthesis via gene editing impaired this attraction. External supplementation with DMNT/TMTT hampered the larvae's ability to locate pre-infested maize. These findings uncover a novel role for DMNT and TMTT in driving the behavior of ACB. Genetic modification of maize to make it less detectable by ACB might be an effective strategy for developing maize germplasm resistant to ACB and for managing this pest effectively in the field.PMID:39171839 | DOI:10.1111/jipb.13763
Cervical mucus can be used for metabolite screening in cervical cancer
Cancer Sci. 2024 Aug 22. doi: 10.1111/cas.16323. Online ahead of print.ABSTRACTApproximately 660,000 women are diagnosed with cervical cancer annually. Current screening options such as cytology or human papillomavirus testing have limitations, creating a need to identify more effective ancillary biomarkers for triage. Here, we evaluated whether metabolomic analysis of cervical mucus metabolism could be used to identify biomarkers of cervical intraepithelial neoplasia (CIN) and cervical cancer. The case-control group consisted of 181 CIN, 69 squamous cell carcinoma (SCC) patients, and 48 healthy controls in the primary cohort. We undertook metabolomic analyses using ultra-HPLC-tandem mass spectrometry. Univariate and multivariate analyses were carried out to profile metabolite characteristics, and receiver operating characteristic (ROC) analysis identified biomarker candidates. Five metabolites conferred the highest discriminatory power for SCC: oxidized glutathione (GSSG) (area under the ROC curve, 0.924; 95% confidence interval, 0.877-0.971), malic acid (0.914, 0.859-0.968), kynurenine (0.884, 0.823-0.945), GSSG/glutathione (GSH) (0.936, 0.892-0.979), and kynurenine/tryptophan (0.909, 0.856-0.961). Malic acid was the best marker for detection of CIN2 or worse (0.858, 0.793-0.922) and was a clinically useful metabolite. We confirmed the reproducibility of the results by validation cohort. Additionally, metabolomic analyses revealed eight pathways strongly associated with cervical neoplasia. Of these, only the tricarboxylic acid cycle was strongly associated with all CINs and cancer, indicating active energy production. Aberrant arginine metabolism by decreasing arginine and increasing citrulline might reduce tumor immunity. Changes in cysteine-methionine and GSH pathways might drive the initiation and progression of cervical cancer. These results suggest that metabolic analysis can identify ancillary biomarkers and could improve our understanding of the pathophysiological mechanisms underlying cervical neoplasia.PMID:39171738 | DOI:10.1111/cas.16323