PubMed
Transcriptomic and Metabolomic Analyses Reveal the Attenuating Role of Cordycepin and Cordyceps militaris Extract on Acute Liver Injury Induced by LPS in Piglets
Animals (Basel). 2024 Oct 5;14(19):2873. doi: 10.3390/ani14192873.ABSTRACTCordyceps militaris extract (CME) contains many bioactive compounds, mainly cordycepin (CPN). This study aimed to investigate the possible mechanisms underlying the amelioration of LPS-induced acute liver injury in piglets by CME or CPN supplementation using multi-omics analysis. Twenty-four weaned piglets were randomly distributed into 4 groups (n = 6): the control and LPS groups were fed basal diets; the CPN + LPS (CPN-LPS) and CME + LPS (CME-LPS) groups were fed the basal diets supplemented with CME or CPN. The results showed that CPN or CME supplementation significantly decreased the C-reactive protein level (p < 0.05) and improved liver tissue pathology to prevent acute liver injury after LPS treatment. Compared with LPS, the transcriptomic analysis indicated that CPN supplementation significantly downregulated cell adhesion molecules, while CME supplementation significantly downregulated inflammatory mediator regulation of TRP channels, complement and coagulation cascades and cytokine-cytokine receptor interaction. The metabolomic results showed that CPN or CME supplementation significantly reduced disease biomarker of bicyclo-prostaglandin E2, and increased levels of deoxyinosine and 3-hydroxyanthranilic acid (p < 0.05). The combined transcriptome and metabolome helped identify two metabolites PC 34:2 and PC 36:0, which may be associated with the restoration of liver cell morphology. In conclusion, CPN and CME could attenuate LPS-induced acute liver injury by regulating immune-related genes and metabolites. This study elucidates the potential protective mechanism of CPN or CME supplementation against acute liver injury.PMID:39409822 | DOI:10.3390/ani14192873
Bioactive Compounds and Valorization of Coffee By-Products from the Origin: A Circular Economy Model from Local Practices in Zongolica, Mexico
Plants (Basel). 2024 Sep 30;13(19):2741. doi: 10.3390/plants13192741.ABSTRACTThe by-products of green coffee processing are rich in compounds that can be recycled for their possible use in the production of beverages, fertilizers and weed control in production areas. The objective of this work was to identify the organic and inorganic bioactive compounds of green coffee and the coffee by-products related to the production of origin, such as dried cascara (skin-pulp), parchment and silverskin (unroasted), in order to investigate the role their biomolecules may have in reuse through practices and local knowledge, not yet valued. The metabolomic profile by HPLC-ESI-HRMS of the aqueous extract of the dried cascara highlighted 93 non-volatile molecules, the highest number reported for dried cascara. They belong to groups of organic acids (12), alkaloids (5), sugars (5), fatty acids (2), diglycerides (1), amino acids (18), phospholipids (7), vitamins (5), phenolic acids (11), flavonoids (8), chlorogenic acids (17), flavones (1) and terpenes (1). For the first time, we report the use of direct analysis in real-time mass spectrometry (DART-MS) for the identification of metabolites in aqueous extracts of dried cascara, parchment, silverskin and green coffee. The DART analysis mainly showed the presence of caffeine and chlorogenic acids in all the extracts; additionally, sugar adducts and antioxidant compounds such as polyphenols were detected. The mineral content (K, Ca, P, S, Mg and Cl) by EDS spectrometry in the by-products and green coffee showed a relatively high content of K in the dried cascara and green coffee, while Ca was detected in double quantity in the silverskin. These metabolomic and mineral profile data allow enhancement of the link between the quality of green coffee and its by-products and the traditional local practices in the crop-growing area. This consolidates the community's experience in reusing by-products, thereby minimizing the impact on the environment and generating additional income for coffee growers' work, in accordance with the principles of circular economy and bioeconomy.PMID:39409611 | DOI:10.3390/plants13192741
Transcriptome and Metabolome Analyses Reveal the Molecular Mechanisms of Albizia odoratissima's Response to Drought Stress
Plants (Basel). 2024 Sep 29;13(19):2732. doi: 10.3390/plants13192732.ABSTRACTAlbizia odoratissima is a deciduous tree species belonging to the family Leguminosae. It is widely distributed in the southern subtropical and tropical areas of China and has important ecological and economic value. The growth and metabolic processes of A. odoratissima are affected by drought stress, but the molecular mechanisms remain unknown. Therefore, this study investigated the physicochemical properties, gene expression, and metabolites of A. odoratissima seedlings under drought stress. The results show that, in leaves of A. odoratissima seedlings, drought stress reduced the moisture content, chlorophyll content, photosynthetic efficiency, superoxide dismutase (SOD) activity, and gibberellin (GA) and indoleacetic acid (IAA) contents while increasing the catalase (CAT) and peroxidase (POD) activities and malondialdehyde (MDA), proline, soluble sugar, and soluble protein contents. Within the CK5 (Day 5 of control group) vs. T5 (Day 5 of drought treatment), CK10 vs. T10, CK15 vs. T15, and CK20 vs. T20 groups (CK: control group; T: drought treatment), a total of 676 differentially expressed genes (DEGs) were upregulated and 518 DEGs were downregulated, and a total of 228 and 143 differential accumulation metabolites (DAMs) were identified in the CK10 vs. T10 and CK20 vs. T20 groups. These were mainly involved in the amino acid and alkaloid metabolism pathways in the leaves of the A. odoratissima seedlings. In the amino acid and alkaloid biosynthesis pathways, the relative expression levels of the AoproA (Aod04G002740, ORTHODONTIC APPLIANCE), AoOAT (Aod07G015970, ORNITHINE-OXO-ACID TRANSAMINASE), and AoAOC3 (Aod12G005010/08G003360/05G023920/08G003000/08G003010, AMINE OXIDASE COPPER CONTAINING 3) genes increased, which concurrently promoted the accumulation of arginine, proline, piperine, cadaverine, and lysine. Furthermore, some key transcription factors in the response to drought were identified in the leaves using the weighted gene co-expression network analyses (WGCNA) method. These findings reveal that A. odoratissima seedlings respond to drought stress by improving the capacities of the antioxidant system and secondary metabolism.PMID:39409602 | DOI:10.3390/plants13192732
Harnessing Multi-Omics Strategies and Bioinformatics Innovations for Advancing Soybean Improvement: A Comprehensive Review
Plants (Basel). 2024 Sep 28;13(19):2714. doi: 10.3390/plants13192714.ABSTRACTSoybean improvement has entered a new era with the advent of multi-omics strategies and bioinformatics innovations, enabling more precise and efficient breeding practices. This comprehensive review examines the application of multi-omics approaches in soybean-encompassing genomics, transcriptomics, proteomics, metabolomics, epigenomics, and phenomics. We first explore pre-breeding and genomic selection as tools that have laid the groundwork for advanced trait improvement. Subsequently, we dig into the specific contributions of each -omics field, highlighting how bioinformatics tools and resources have facilitated the generation and integration of multifaceted data. The review emphasizes the power of integrating multi-omics datasets to elucidate complex traits and drive the development of superior soybean cultivars. Emerging trends, including novel computational techniques and high-throughput technologies, are discussed in the context of their potential to revolutionize soybean breeding. Finally, we address the challenges associated with multi-omics integration and propose future directions to overcome these hurdles, aiming to accelerate the pace of soybean improvement. This review serves as a crucial resource for researchers and breeders seeking to leverage multi-omics strategies for enhanced soybean productivity and resilience.PMID:39409584 | DOI:10.3390/plants13192714
Altitude-Dependent Morphophysiological, Anatomical, and Metabolomic Adaptations in Rhodiola linearifolia Boriss
Plants (Basel). 2024 Sep 26;13(19):2698. doi: 10.3390/plants13192698.ABSTRACTRhodiola linearifolia Boriss., a perennial alpine plant from the Crassulaceae family, is renowned for its unique medicinal properties. However, existing research on this species is limited, particularly regarding the impact of altitude on its physiological and medicinal compounds. The current study employed morphophysiological and anatomical methods to explore the adaptive mechanisms of R. linearifolia across different altitudinal gradients, while also examining photosynthetic pigments and metabolomic changes. Our results indicate that despite the simultaneous effects of various mountain abiotic factors, significant correlations can be identified between altitude and trait variation. An optimal growth altitude of 2687 m above sea level was identified, which is pivotal for sustainable ecosystem management and potential species introduction strategies. It is noted that increasing altitude stress enhances the synthesis of secondary antioxidant metabolites in R. linearifolia, enhancing its pharmaceutical potential.PMID:39409568 | DOI:10.3390/plants13192698
Metabolite and Transcriptomic Changes Reveal the Cold Stratification Process in <em>Sinopodophyllum hexandrum</em> Seeds
Plants (Basel). 2024 Sep 26;13(19):2693. doi: 10.3390/plants13192693.ABSTRACTSinopodophyllum hexandrum (Royle) Ying, an endangered perennial medicinal herb, exhibits morpho-physiological dormancy in its seeds, requiring cold stratification for germination. However, the precise molecular mechanisms underlying this transition from dormancy to germination remain unclear. This study integrates transcriptome and plant hormone-targeted metabolomics techniques to unravel these intricate molecular regulatory mechanisms during cold stratification in S. hexandrum seeds. Significant alterations in the physicochemical properties (starch, soluble sugars, soluble proteins) and enzyme activities (PK, SDH, G-6-PDH) within the seeds occur during stratification. To characterize and monitor the formation and transformation of plant hormones throughout this process, extracts from S. hexandrum seeds at five stratification stages of 0 days (S0), 30 days (S1), 60 days (S2), 90 days (S3), and 120 days (S4) were analyzed using UPLC-MS/MS, revealing a total of 37 differential metabolites belonging to seven major classes of plant hormones. To investigate the biosynthetic and conversion processes of plant hormones related to seed dormancy and germination, the transcriptome of S. hexandrum seeds was monitored via RNA-seq, revealing 65,372 differentially expressed genes associated with plant hormone synthesis and signaling. Notably, cytokinins (CKs) and gibberellins (GAs) exhibited synergistic effects, while abscisic acid (ABA) displayed antagonistic effects. Furthermore, key hub genes were identified through integrated network analysis. In this rigorous scientific study, we systematically elucidate the intricate dynamic molecular regulatory mechanisms that govern the transition from dormancy to germination in S. hexandrum seeds during stratification. By meticulously examining these mechanisms, we establish a solid foundation of knowledge that serves as a scientific basis for facilitating large-scale breeding programs and advancing the artificial cultivation of this highly valued medicinal plant.PMID:39409563 | DOI:10.3390/plants13192693
Integrated Metabolomics and Transcriptomics Analyses Reveal the Regulatory Mechanisms of Anthocyanin and Carotenoid Accumulation in the Peel of Coffea arabica
Int J Mol Sci. 2024 Oct 6;25(19):10754. doi: 10.3390/ijms251910754.ABSTRACTThe color of coffee fruits is influenced by several factors, including cultivar, ripening stage, and metabolite composition. However, the metabolic accumulation of pigments and the molecular mechanisms underlying peel coloration during the ripening process of Coffea arabica L. remain relatively understudied. In this study, UPLC-MS/MS-based metabolomics and RNA sequencing (RNA-seq)-based transcriptomics were integrated to investigate the accumulation of anthocyanins and carotenoids in the peel of Coffea arabica at different ripening stages: green peel (GP), green-yellow peel (GYRP), red peel (RP), and red-purple peel (RPP). This integration aimed at elucidating the molecular mechanisms associated with these changes. A total of ten anthocyanins, six carotenoids, and thirty-five xanthophylls were identified throughout the ripening process. The results demonstrated a gradual decrease in the total carotenoid content in the peel with fruit maturation, while anthocyanin content increased significantly. Notably, the accumulation of specific anthocyanins was closely associated with the transition of peel colors from green to red. Integrated metabolomics and transcriptomics analyses identified the GYRP stage as critical for this color transition. A weighted gene co-expression network analysis (WGCNA) revealed that enzyme-coding genes such as 3AT, BZ1, and lcyE, along with transcription factors including MYB, NAC, and bHLH, which interact with PHD and SET TR, may regulate the biosynthesis of anthocyanins and carotenoids, thereby influencing peel pigmentation. These findings provide valuable insights into the molecular mechanisms underlying the accumulation of anthocyanins and carotenoids in Coffea arabica peel during fruit maturation.PMID:39409088 | DOI:10.3390/ijms251910754
Platelet Proteomics and Tissue Metabolomics Investigation for the Mechanism of Aspirin Eugenol Ester on Preventive Thrombosis Mechanism in a Rat Thrombosis Model
Int J Mol Sci. 2024 Oct 6;25(19):10747. doi: 10.3390/ijms251910747.ABSTRACTPlatelet activation is closely related to thrombosis. Aspirin eugenol ester (AEE) is a novel medicinal compound synthesized by esterifying aspirin with eugenol using the pro-drug principle. Pharmacological and pharmacodynamic experiments showed that AEE has excellent anti-inflammatory, antioxidant, and inhibitory platelet activation effects, preventing thrombosis. However, the regulatory network and action target of AEE in inhibiting platelet activation remain unknown. This study aimed to investigate the effects of AEE on platelets of thrombosed rats to reveal its regulatory mechanism via a multi-omics approach. The platelet proteomic results showed that 348 DEPs were identified in the AEE group compared with the model group, of which 87 were up- and 261 down-regulated. The pathways in this result were different from previous results, including mTOR signaling and ADP signaling at P2Y purinoceptor 12. The metabolomics of heart and abdominal aortic tissue results showed that the differential metabolites were mainly involved in steroid biosynthesis, the citric acid cycle, phenylalanine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, and glutathione metabolism. Molecular docking results showed that AEE had a better binding force to both the COX-1 and P2Y12 protein. AEE could effectively inhibit platelet activation by inhibiting COX-1 protein and P2Y12 protein activity, thereby inhibiting platelet aggregation. Therefore, AEE can have a positive effect on inhibiting platelet activation.PMID:39409077 | DOI:10.3390/ijms251910747
Higher Steroid Production in the Right Adrenal Gland Compared to the Left One in db/db Mice, a Model of Type 2 Diabetic Obesity
Int J Mol Sci. 2024 Oct 3;25(19):10658. doi: 10.3390/ijms251910658.ABSTRACTVertebrates exhibit a left-right asymmetry from the central structures to the peripheral paired endocrine organs. However, the asymmetries in paired endocrine glands and the pathological consequences of such asymmetries remain largely unknown. The adrenal gland constitutes a pair of peripheral end organs in the neuroendocrine system, responsible for producing steroid hormones under stimuli. In the present study, the lateralized asymmetry of left and right adrenal glands in leptin receptor-deficit db/db mice was investigated. First, a morphological and histological examination showed that adrenal mass and adrenal cortex volume in db/db mice were significantly higher than in non-diabetic control mice. Then, adrenal transcriptomic and serum metabolomic analyses were performed. Adrenal steroid profiling showed that the levels of corticosterone and aldosterone in the right adrenal gland of db/db mice were two times higher than in the left one. The expression of multiple genes related to adrenal regeneration and innervation in db/db mice was reduced in contrast to the increased steroid hormone secretion. Furthermore, an examination of morphogens in asymmetric adrenal development revealed a significant differential expression of Shh and its receptor gene Ptch1. In conclusion, the present study has provided evidence that a superior steroidogenesis exists in the right adrenal gland of db/db mice and suggested that Shh signaling may play an important role in asymmetric adrenal responses in type 2 diabetes and its complications.PMID:39408986 | DOI:10.3390/ijms251910658
Impact of Gut Microbiota and SCFAs in the Pathogenesis of PCOS and the Effect of Metformin Therapy
Int J Mol Sci. 2024 Oct 2;25(19):10636. doi: 10.3390/ijms251910636.ABSTRACTPolycystic ovary syndrome (PCOS) is a complex disorder that impacts both the endocrine and metabolic systems, often resulting in infertility, obesity, insulin resistance, and cardiovascular complications. The aim of this study is to investigate the role of intestinal flora and its metabolites, particularly short-chain fatty acids (SCFAs), in the development of PCOS, and to assess the effects of metformin therapy on these components. SCFA levels in fecal and blood samples from women with PCOS (n=69) and healthy controls (n=18) were analyzed using Gas Chromatography-Mass Spectrometry (GC/MS) for precise measurement. Fecal microbiota were quantitatively detected by real-time polymerase chain reaction (PCR). To assess the efficacy of six months of metformin treatment, changes in the microbiota and SCFAs in the PCOS group (n=69) were also evaluated. The results revealed that women with PCOS exhibited a significant reduction in beneficial bacteria (namely, the C. leptum group and Prevotella spp.) alongside a notable overgrowth of opportunistic microorganisms (C. perfringens, C. difficile, Staphylococcus spp., and Streptococcus spp.). An overproduction of acetic acid (AA, FC=0.47, p<0.05) and valeric acid (VA, FC=0.54, p<0.05) suggests a link between elevated SCFAs and the development of obesity and PCOS. Interestingly, AA in the bloodstream might offer a protective effect against PCOS by ameliorating key symptoms such as high body mass index (r=-0.33, p=0.02), insulin resistance (r=-0.39, p=0.02), and chronic inflammation. Although serum SCFA levels showed non-significant changes following metformin treatment (p>0.05), the normalization of AA in the gut underscores that metformin exerts a more pronounced effect locally within the gastrointestinal tract. Furthermore, the study identified the most effective model for predicting the success of metformin therapy, based on serum concentrations of butyric acid (BA) and VA, achieving a 91% accuracy rate, 100% sensitivity, and 80% specificity. These promising findings highlight the potential for developing targeted interventions and personalized treatments, ultimately improving clinical outcomes for women with PCOS.PMID:39408965 | DOI:10.3390/ijms251910636
Ursolic Acid Regulates Immune Balance, Modulates Gut Microbial Metabolism, and Improves Liver Health in Mice
Int J Mol Sci. 2024 Oct 2;25(19):10623. doi: 10.3390/ijms251910623.ABSTRACTUrsolic acid (UA) has demonstrated significant immunomodulatory and hepatoprotective effects; however, the underlying mechanisms remain unclear. This study aims to analyze the impact of UA on the gut microbiome, metabolome, and liver transcriptome, investigate UA's role in maintaining gut immune homeostasis and liver health, and evaluate the potential contributions of gut microbes and their metabolites to these beneficial effects. Our findings indicate that UA enhances immune balance in the jejunum, fortifies intestinal barrier function, and promotes overall gut health. UA modulates the intestinal microbiota and its metabolic processes, notably increasing the abundance of beneficial bacteria such as Odoribacter and Parabacteroides, along with their metabolites, including ornithine and lactucin. Additionally, UA inhibits the expression of interleukin-1 receptor 1 (IL1R1) and calcium (Ca2+) voltage-gated channel auxiliary subunit beta 2 (CACNB2) while enhancing the synthesis pathways of retinol and ascorbic acid, thereby exerting a protective influence on liver function. In summary, UA enhances intestinal immune homeostasis and promotes liver health, with these advantageous effects potentially mediated by beneficial bacteria (Odoribacter and Parabacteroides) and their metabolites (ornithine and lactucin).PMID:39408951 | DOI:10.3390/ijms251910623
Identification of Grape Laccase Genes and Their Potential Role in Secondary Metabolite Synthesis
Int J Mol Sci. 2024 Sep 30;25(19):10574. doi: 10.3390/ijms251910574.ABSTRACTLaccase, a copper-containing oxidoreductase, has close links with secondary metabolite biosynthesis in plants. Its activity can affect the synthesis and accumulation of secondary metabolites, thereby influencing plant growth, development, and stress resistance. This study aims to identify the grape laccases (VviLAC) gene family members in grape (Vitis vinifera L.) and explore the transcriptional regulatory network in berry development. Here, 115 VviLACs were identified and divided into seven (Type I-VII) classes. These were distributed on 17 chromosomes and out of 47 VviLACs on chromosome 18, 34 (72.34%) were involved in tandem duplication events. VviLAC1, VviLAC2, VviLAC3, and VviLAC62 were highly expressed before fruit color development, while VviLAC4, VviLAC12, VviLAC16, VviLAC18, VviLAC20, VviLAC53, VviLAC60 and VviLAC105 were highly expressed after fruit color transformation. Notably, VviLAC105 showed a significant positive correlation with important metabolites including resveratrol, resveratrol dimer, and peonidin-3-glucoside. Analysis of the transcriptional regulatory network predicted that the 12 different transcription factors target VviLACs genes. Specifically, WRKY and ERF were identified as potential transcriptional regulatory factors for VviLAC105, while Dof and MYB were identified as potential transcriptional regulatory factors for VviLAC51. This study identifies and provides basic information on the grape LAC gene family members and, in combination with transcriptome and metabolome data, predicts the upstream transcriptional regulatory network of VviLACs.PMID:39408902 | DOI:10.3390/ijms251910574
Untargeted Metabolomics Approach for the Discovery of Salinity-Related Alkaloids in a Stony Coral-Derived Fungus Aspergillus terreus
Int J Mol Sci. 2024 Sep 30;25(19):10544. doi: 10.3390/ijms251910544.ABSTRACTAs a part of the important species that form coral reef ecosystems, stony corals have become a potential source of pharmacologically active lead compounds for an increasing number of compounds with novel chemical structures and strong biological activity. In this study, the secondary metabolites and biological activities are reported for Aspergillus terreus C21-1, an epiphytic fungus acquired from Porites pukoensis collected from Xuwen Coral Reef Nature Reserve, China. This strain was cultured in potato dextrose broth (PDB) media and rice media with different salinities based on the OSMAC strategy. The mycelial morphology and high-performance thin layer chromatographic (HPTLC) fingerprints of the fermentation extracts together with bioautography were recorded. Furthermore, an untargeted metabolomics study was performed using principal component analysis (PCA), orthogonal projection to latent structure discriminant analysis (O-PLSDA), and feature-based molecular networking (FBMN) to analyze their secondary metabolite variations. The comprehensive results revealed that the metabolite expression in A. terreus C21-1 differed significantly between liquid and solid media. The metabolites produced in liquid medium were more diverse but less numerous compared to those in solid medium. Meanwhile, the mycelial morphology underwent significant changes with increasing salinity under PDB cultivation conditions, especially in PDB with 10% salinity. Untargeted metabolomics revealed significant differences between PDB with 10% salinity and other media, as well as between liquid and solid media. FBMN analysis indicated that alkaloids, which might be produced under high salt stress, contributed largely to the differences. The biological activities results showed that six groups of crude extracts exhibited acetylcholinesterase (AChE) inhibitory activities, along with 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and antibacterial activities. The results of this study showed that the increase in salinity favored the production of unique alkaloid compounds by A. terreus C21-1.PMID:39408873 | DOI:10.3390/ijms251910544
A Proteogenomic Approach to Unveiling the Complex Biology of the Microbiome
Int J Mol Sci. 2024 Sep 28;25(19):10467. doi: 10.3390/ijms251910467.ABSTRACTThe complex biology of the microbiome was elucidated once the genomics era began. The proteogenomic approach analyzes and integrates genetic makeup (genomics) and microbial communities' expressed proteins (proteomics). Therefore, researchers gained insights into gene expression, protein functions, and metabolic pathways, understanding microbial dynamics and behavior, interactions with host cells, and responses to environmental stimuli. In this context, our work aims to bring together data regarding the application of genomics, proteomics, and bioinformatics in microbiome research and to provide new perspectives for applying microbiota modulation in clinical practice with maximum efficiency. This review also synthesizes data from the literature, shedding light on the potential biomarkers and therapeutic targets for various diseases influenced by the microbiome.PMID:39408795 | DOI:10.3390/ijms251910467
Effects of Alkalinity Stress on Amino Acid Metabolism Profiles and Oxidative-Stress-Mediated Apoptosis/Ferroptosis in Hybrid Sturgeon (<em>Huso dauricus</em> ♀ × <em>Acipenser schrenckii</em> ♂) Livers
Int J Mol Sci. 2024 Sep 27;25(19):10456. doi: 10.3390/ijms251910456.ABSTRACTAlkaline water is toxic to cultured aquatic animals that frequently live in pH-neutral freshwater. Overfishing and habitat destruction have contributed to the decline in the wild sturgeon population; consequently, the domestic hybrid sturgeon has become an increasingly important commercial species in China. Hybrid sturgeons are widely cultured in alkaline water, but little is known about the effects of alkalinity stress on hybrid sturgeon liver tissues. We exposed hybrid sturgeons to four alkaline concentrations (3.14 ± 0.02 mmol/L, 7.57 ± 0.08 mmol/L, 11.78 ± 0.24 mmol/L and 15.46 ± 0.48 mmol/L). Histopathology, biochemical index assessment, gene expression level detection and metabolomics analysis were used to investigate the negative effects on liver functions following exposure to NaHCO3. Livers exposed to alkaline stress exhibited severe tissue injury and clear apoptotic characteristics. With increased exposure concentrations, the hepatic superoxide dismutase, catalase, glutathione peroxidase and alkaline phosphatase activities significantly decreased in a dose-dependent manner. NaHCO3 exposure up-regulated the transcriptional levels of apoptosis/ferroptosis-related genes in livers. Similarly, the expression trends of interleukin-1β and heat shock protein genes also increased in high-alkalinity environments. However, the expression levels of complement protein 3 significantly decreased (p < 0.05). Hepatic untargeted metabolomics revealed the alteration conditions of various metabolites associated with the antioxidant response, the ferroptosis process and amino acid metabolism (such as beta-alanine metabolism; alanine, aspartate and glutamate metabolism; and glycine, serine and threonine metabolism). These data provided evidence that NaHCO3 impaired immune functions and the integrity of hybrid sturgeon liver tissues by mediating oxidative-stress-mediated apoptosis and ferroptosis. Our results shed light on the breeding welfare of domestic hybrid sturgeons and promote the economic development of fisheries in China.PMID:39408786 | DOI:10.3390/ijms251910456
Comparative Metabolome and Transcriptome Analysis Reveals the Defense Mechanism of Chinese Cabbage (Brassica rapa L. ssp. pekinensis) against Plasmodiophora brassicae Infection
Int J Mol Sci. 2024 Sep 27;25(19):10440. doi: 10.3390/ijms251910440.ABSTRACTChinese cabbage (Brassica rapa L. ssp. pekinensis) ranks among the most cultivated and consumed vegetables in China. A major threat to its production is Plasmodiophora brassicae, which causes large root tumors, obstructing nutrient and water absorption and resulting in plant withering. This study used a widely targeted metabolome technique to identify resistance-related metabolites in resistant (DH40R) and susceptible (DH199S) Chinese cabbage varieties after inoculation with P. brassicae. This study analyzed disease-related metabolites during different periods, identifying 257 metabolites linked to resistance, enriched in the phenylpropanoid biosynthesis pathway, and 248 metabolites linked to susceptibility, enriched in the arachidonic acid metabolism pathway. Key metabolites and genes in the phenylpropanoid pathway were upregulated at 5 days post-inoculation (DPI), suggesting their role in disease resistance. In the arachidonic acid pathway, linoleic acid and gamma-linolenic acid were upregulated at 5 and 22 DPI in resistant plants, while arachidonic acid was upregulated at 22 DPI in susceptible plants, leading to the conclusion that arachidonic acid may be a response substance in susceptible plants after inoculation. Many genes enriched in these pathways were differentially expressed in DH40R and DH199S. The research provided insights into the defense mechanisms of Chinese cabbage against P. brassicae through combined metabolome and transcriptome analysis.PMID:39408769 | DOI:10.3390/ijms251910440
Transcriptomic and Metabolomic Profiling of Root Tissue in Drought-Tolerant and Drought-Susceptible Wheat Genotypes in Response to Water Stress
Int J Mol Sci. 2024 Sep 27;25(19):10430. doi: 10.3390/ijms251910430.ABSTRACTWheat is the most widely grown crop in the world; its production is severely disrupted by increasing water deficit. Plant roots play a crucial role in the uptake of water and perception and transduction of water deficit signals. In the past decade, the mechanisms of drought tolerance have been frequently reported; however, the transcriptome and metabolome regulatory network of root responses to water stress has not been fully understood in wheat. In this study, the global transcriptomic and metabolomics profiles were employed to investigate the mechanisms of roots responding to water stresses using the drought-tolerant (DT) and drought-susceptible (DS) wheat genotypes. The results showed that compared with the control group, wheat roots exposed to polyethylene glycol (PEG) had 25941 differentially expressed genes (DEGs) and more upregulated genes were found in DT (8610) than DS (7141). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs of the drought-tolerant genotype were preferably enriched in the flavonoid biosynthetic process, anthocyanin biosynthesis and suberin biosynthesis. The integrated analysis of the transcriptome and metabolome showed that in DT, the KEGG pathways, including flavonoid biosynthesis and arginine and proline metabolism, were shared by differentially accumulated metabolites (DAMs) and DEGs at 6 h after treatment (HAT) and pathways including alanine, aspartate, glutamate metabolism and carbon metabolism were shared at 48 HAT, while in DS, the KEGG pathways shared by DAMs and DEGs only included arginine and proline metabolism at 6 HAT and the biosynthesis of amino acids at 48 HAT. Our results suggest that the drought-tolerant genotype may relieve the drought stress by producing more ROS scavengers, osmoprotectants, energy and larger roots. Interestingly, hormone signaling plays an important role in promoting the development of larger roots and a higher capability to absorb and transport water in drought-tolerant genotypes.PMID:39408761 | DOI:10.3390/ijms251910430
Vitamin B6 Pathway Maintains Glioblastoma Cell Survival in 3D Spheroid Cultures
Int J Mol Sci. 2024 Sep 27;25(19):10428. doi: 10.3390/ijms251910428.ABSTRACTGlioblastoma (GBM) is a deadly brain cancer. The prognosis of GBM patients has marginally improved over the last three decades. The response of GBMs to initial treatment is inevitably followed by relapse. Thus, there is an urgent need to identify and develop new therapeutics to target this cancer and improve both patient outcomes and long-term survival. Metabolic reprogramming is considered one of the hallmarks of cancers. However, cell-based studies fail to accurately recapitulate the in vivo tumour microenvironment that influences metabolic signalling and rewiring. Against this backdrop, we conducted global, untargeted metabolomics analysis of the G7 and R24 GBM 2D monolayers and 3D spheroid cultures under identical cell culture conditions. Our studies revealed that the levels of multiple metabolites associated with the vitamin B6 pathway were significantly altered in 3D spheroids compared to the 2D monolayer cultures. Importantly, we show that pharmacological intervention with hydralazine, a small molecule that reduces vitamin B6 levels, resulted in the cell death of 3D GBM spheroid cultures. Thus, our study shows that inhibition of the vitamin B6 pathway is a novel therapeutic strategy for the development of targeted therapies in GBMs.PMID:39408757 | DOI:10.3390/ijms251910428
Metabolome and Transcriptome Joint Analysis Reveals That Different Sucrose Levels Regulate the Production of Flavonoids and Stilbenes in Grape Callus Culture
Int J Mol Sci. 2024 Sep 27;25(19):10398. doi: 10.3390/ijms251910398.ABSTRACTTo reveal the effect of sucrose concentration on the production of secondary metabolites, a metabolome and transcriptome joint analysis was carried out using callus induced from grape variety Mio Red cambial meristematic cells. We identified 559 metabolites-mainly flavonoids, phenolic acids, and stilbenoids-as differential content metabolites (fold change ≥2 or ≤0.5) in at least one pairwise comparison of treatments with 7.5, 15, or 30 g/L sucrose in the growing media for 15 or 30 days (d). Resveratrol, viniferin, and amurensin contents were highest at 15 d of subculture; piceid, ampelopsin, and pterostilbene had higher contents at 30 d. A transcriptome analysis identified 1310 and 498 (at 15 d) and 1696 and 2211 (at 30 d) differentially expressed genes (DEGs; log2(fold change) ≥ 1, p < 0.05) in 7.5 vs. 15 g/L and 15 vs. 30 g/L sucrose treatments, respectively. In phenylpropane and isoflavone pathways, DEGs encoding cinnamic acid 4-hydroxylase, chalcone synthase, chalcone isomerase, and flavanone 3-hydroxylase were more highly expressed at 15 d than at 30 d, while other DEGs showed different regulation patterns corresponding to sucrose concentrations and cultivation times. For all three sucrose concentrations, the stilbene synthase (STS) gene exhibited significantly higher expression at 15 vs. 30 d, while two resveratrol O-methyltransferase (ROMT) genes related to pterostilbene synthesis showed significantly higher expression at 30 vs. 15 d. In addition, a total of 481 DEGs were annotated as transcription factors in pairwise comparisons; an integrative analysis suggested MYB59, WRKY20, and MADS8 as potential regulators responding to sucrose levels in flavonoid and stilbene biosynthesis in grape callus. Our results provide valuable information for high-efficiency production of flavonoids and stilbenes using grape callus.PMID:39408726 | DOI:10.3390/ijms251910398
Linoleic Acid Induces Metabolic Reprogramming and Inhibits Oxidative and Inflammatory Effects in Keratinocytes Exposed to UVB Radiation
Int J Mol Sci. 2024 Sep 26;25(19):10385. doi: 10.3390/ijms251910385.ABSTRACTLinoleic acid (LA), the primary ω-6 polyunsaturated fatty acid (PUFA) found in the epidermis, plays a crucial role in preserving the integrity of the skin's water permeability barrier. Additionally, vegetable oils rich in LA have been shown to notably mitigate ultraviolet (UV) radiation-induced effects, including the production of reactive oxygen species (ROS), cellular damage, and skin photoaging. These beneficial effects are primarily ascribed to the LA in these oils. Nonetheless, the precise mechanisms through which LA confers protection against damage induced by exposure to UVB radiation remain unclear. This study aimed to examine whether LA can restore redox and metabolic equilibria and to assess its influence on the inflammatory response triggered by UVB radiation in keratinocytes. Flow cytometry analysis unveiled the capacity of LA to diminish UVB-induced ROS levels in HaCaT cells. GC/MS-based metabolomics highlighted significant metabolic changes, especially in carbohydrate, amino acid, and glutathione (GSH) metabolism, with LA restoring depleted GSH levels post-UVB exposure. LA also upregulated PI3K/Akt-dependent GCLC and GSS expression while downregulating COX-2 expression. These results suggest that LA induces metabolic reprogramming, protecting against UVB-induced oxidative damage by enhancing GSH biosynthesis via PI3K/Akt signaling. Moreover, it suppresses UVB-induced COX-2 expression in HaCaT cells, making LA treatment a promising strategy against UVB-induced oxidative and inflammatory damage.PMID:39408715 | DOI:10.3390/ijms251910385