Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Drug Repurposing for Effective Alzheimer's Disease Medicines: Existing Methods and Novel Pharmacoepidemiological Approaches

Fri, 18/10/2024 - 12:00
J Alzheimers Dis. 2024;101(s1):S299-S315. doi: 10.3233/JAD-240680.ABSTRACTDrug repurposing is a methodology used to identify new clinical indications for existing drugs developed for other indications and has been successfully applied in the treatment of numerous conditions. Alzheimer's disease (AD) may be particularly well-suited to the application of drug repurposing methods given the absence of effective therapies and abundance of multi-omic data that has been generated in AD patients recently that may facilitate discovery of candidate AD drugs. A recent focus of drug repurposing has been in the application of pharmacoepidemiologic approaches to drug evaluation. Here, real-world clinical datasets with large numbers of patients are leveraged to establish observational efficacy of candidate drugs for further evaluation in disease models and clinical trials. In this review, we provide a selected overview of methods for drug repurposing, including signature matching, network analysis, molecular docking, phenotypic screening, semantic network, and pharmacoepidemiological analyses. Numerous methods have also been applied specifically to AD with the aim of nominating novel drug candidates for evaluation. These approaches, however, are prone to numerous limitations and potential biases that we have sought to address in the Drug Repurposing for Effective Alzheimer's Medicines (DREAM) study, a multi-step framework for selection and validation of potential drug candidates that has demonstrated the promise of STAT3 inhibitors and re-evaluated evidence for other drug candidates, such as phosphodiesterase inhibitors. Taken together, drug repurposing holds significant promise for development of novel AD therapeutics, particularly as the pace of data generation and development of analytical methods continue to accelerate.PMID:39422962 | DOI:10.3233/JAD-240680

PYCR1 promotes liver cancer cell growth and metastasis by regulating IRS1 expression through lactylation modification

Fri, 18/10/2024 - 12:00
Clin Transl Med. 2024 Oct;14(10):e70045. doi: 10.1002/ctm2.70045.ABSTRACTBACKGROUND: Liver cancer (LC) is among the deadliest cancers worldwide, with existing treatments showing limited efficacy. This study aimed to elucidate the role and underlying mechanisms of pyrroline-5-carboxylate reductase 1 (PYCR1) as a potential therapeutic target in LC.METHODS: Immunohistochemistry and Western blot were used to analyse the expression of PYCR1 in LC cells and tissues. EdU assays, colony-forming assays, scratch wound healing assays, Transwell assays, nude mouse xenograft models and nude mouse lung metastasis models were used to detect the growth and metastasis abilities of LC cells. Transcriptome sequencing was used to search for downstream target genes regulated by PYCR1, and metabolomics was used to identify the downstream metabolites regulated by PYCR1. ChIP assays were used to analyse the enrichment of H3K18 lactylation in the IRS1 promoter region.RESULTS: We found that the expression of PYCR1 was significantly increased in HCC and that this high expression was associated with poor prognosis in HCC patients. Knockout or inhibition of PYCR1 inhibited HCC cell proliferation, migration and invasion both in vivo and in vitro. In addition, we revealed that knocking out or inhibiting PYCR1 could inhibit glycolysis in HCC cells and reduce H3K18 lactylation of the IRS1 histone, thereby inhibiting IRS1 expression.CONCLUSIONS: Our findings identify PYCR1 as a pivotal regulator of LC progression that influences tumour cell metabolism and gene expression. By demonstrating the potential of targeting PYCR1 to inhibit LC cell proliferation and metastasis, this study identified PYCR1 as a promising therapeutic target for LC.HIGHLIGHTS: Pyrroline-5-carboxylate reductase 1 (PYCR1) promotes the proliferation and metastasis of liver cancer (LC) cells. The expression of PYCR1 in LC is regulated by DNA methylation. Knocking down or inhibiting PYCR1 inhibits glycolysis as well as the PI3K/AKT/mTOR and MAPK/ERK pathways in LC cells. PYCR1 regulates the transcriptional activity of IRS1 by affecting H3K18 lactylation in its promoter region.PMID:39422696 | DOI:10.1002/ctm2.70045

Targeted and Untargeted Amine Metabolite Quantitation in Single Cells with Isobaric Multiplexing

Fri, 18/10/2024 - 12:00
Chemistry. 2024 Oct 18:e202403278. doi: 10.1002/chem.202403278. Online ahead of print.ABSTRACTWe developed a single cell amine analysis approach utilizing isobarically multiplexed samples of 6 individual cells along with analyte abundant carrier. This methodology was applied for absolute quantitation of amino acids and untargeted relative quantitation of amines in a total of 108 individual cells using nanoflow LC with high-resolution mass spectrometry. Together with individually determined cell sizes, this provides quantification of intracellular concentrations within individual cells. The targeted method was partially validated for 10 amino acids with limits of detection in low attomoles, linear calibration range covering analyte amounts typically from 30 amol to 120 fmol, and correlation coefficients (R) above 0.99. This was applied with cell sizes recorded during dispensing to determine millimolar intracellular amino acid concentrations. The untargeted approach yielded 249 features that were detected in at least 25% of the single cells, providing modest cell type separation on principal component analysis. Using Greedy forward selection with regularized least squares, a sub-selection of 100 features explaining most of the difference was determined. These features were annotated using MS2 from analyte standards and accurate mass with library search. The approach provides accessible, sensitive, and high-throughput method with the potential to be expanded also to other forms of ultrasensitive analysis.PMID:39422672 | DOI:10.1002/chem.202403278

Integrated analysis of microbiota and gut microbial metabolites in blood for breast cancer

Fri, 18/10/2024 - 12:00
mSystems. 2024 Oct 18:e0064324. doi: 10.1128/msystems.00643-24. Online ahead of print.ABSTRACTGut microbiota and associated metabolites have been linked to breast carcinogenesis. Evidences demonstrate blood microbiota primarily originates from the gut and may act as a biomarker for breast cancer. We aimed to characterize the microbiota-gut microbial metabolites cross-talk in blood and develop a composite diagnostic panel for breast cancer. We performed 16S rRNA gene sequencing and metabolomics profiling on blood samples from 107 breast cancer cases and 107 age-paired controls. We found that the alpha diversity of the blood microbiota was decreased in breast cancer compared to controls. There were significantly different profiles of microbiota and gut microbial metabolites in blood between these two groups, with nine bacterial genera and four gut microbial metabolites increased in patients, while thirty-nine bacterial genera and two gut microbial metabolites increased in controls. Some breast cancer-associated gut microbial metabolites were linked to differential blood microbiota, and a composite microbiota-metabolite diagnostic panel was further developed with an area under the curve of 0.963 for breast cancer. This study underscored the pivotal role of microbiota and gut microbial metabolites in blood and their interactions for breast carcinogenesis, as well as the potential of a composite diagnostic panel as a non-invasive biomarker for breast cancer.IMPORTANCEOur integrated analysis demonstrated altered profiles of microbiota and gut microbial metabolites in blood for breast cancer patients. The extensive correlation between microbiota and gut microbial metabolites in blood assisted the understanding of the pathogenesis of breast cancer. The good performance of a composite microbiota-gut microbial metabolites panel in blood suggested a non-invasive approach for breast cancer detection and a novel strategy for better diagnosis and prevention of breast cancer in the future.PMID:39422470 | DOI:10.1128/msystems.00643-24

Essential role of proline synthesis and the one-carbon metabolism pathways for systemic virulence of <em>Streptococcus pneumoniae</em>

Fri, 18/10/2024 - 12:00
mBio. 2024 Oct 18:e0175824. doi: 10.1128/mbio.01758-24. Online ahead of print.ABSTRACTVirulence screens have indicated potential roles during Streptococcus pneumoniae infection for the one-carbon metabolism pathway component Fhs and proline synthesis mediated by ProABC. To define how these metabolic pathways affect S. pneumoniae virulence, we have investigated the phenotypes, transcription, and metabolic profiles of Δfhs and ΔproABC mutants. S. pneumoniae capsular serotype 6B BHN418 Δfhs and ΔproABC mutant strains had strongly reduced virulence in mouse sepsis and pneumonia models but could colonize the nasopharynx. Both mutant strains grew normally in complete media but had markedly impaired growth in chemically defined medium, human serum, and human cerebrospinal fluid. The BHN418 ΔproABC strain also had impaired growth under conditions of osmotic and oxidative stress. The virulence role of proABC was strain specific, as the D39 ΔproABC strain could still cause septicemia and grow in serum. Compared to culture in broth, in serum, the BHN418 Δfhs and ΔproABC strains showed considerable derangement in global gene transcription that affected multiple but different metabolic pathways for each mutant strain. Metabolic data suggested that Δfhs had an impaired stringent response, and when cultured in sera, BHN418 Δfhs and ΔproABC were under increased oxidative stress and had altered lipid profiles. Loss of proABC also affected carbohydrate metabolism and the accumulation of peptidoglycan synthesis precursors in the BHN418 but not the D39 background, linking this phenotype to the conditional virulence phenotype. These data identify the S. pneumoniae metabolic functions affected by S. pneumoniae one-carbon metabolism and proline biosynthesis, and the role of these genetic loci for establishing systemic infection.IMPORTANCERapid adaptation to grow within the physiological conditions found in the host environment is an essential but poorly understood virulence requirement for systemic pathogens such as Streptococcus pneumoniae. We have now demonstrated an essential role for the one-carbon metabolism pathway and a conditional role depending on strain background for proline biosynthesis for S. pneumoniae growth in serum or cerebrospinal fluid, and therefore for systemic virulence. RNAseq and metabolomic data demonstrated that the loss of one-carbon metabolism or proline biosynthesis has profound but differing effects on S. pneumoniae metabolism in human serum, identifying the metabolic processes dependent on each pathway during systemic infection. These data provide a more detailed understanding of the adaptations required by systemic bacterial pathogens in order to cause infection and demonstrate that the requirement for some of these adaptations varies between strains from the same species and could therefore underpin strain variations in virulence potential.PMID:39422467 | DOI:10.1128/mbio.01758-24

The MaNAP1-MaMADS1 transcription factor module mediates ethylene-regulated peel softening and ripening in banana

Fri, 18/10/2024 - 12:00
Plant Cell. 2024 Oct 18:koae282. doi: 10.1093/plcell/koae282. Online ahead of print.ABSTRACTThe banana (Musa spp.) peel undergoes rapid softening during ripening, leading to finger drop and a shortened shelf life. The regulatory mechanism behind this process remains to be elucidated. In this study, we confirmed the role of peel softening in banana finger drop and uncovered the underlying transcriptional regulatory network. Cell wall-related (CWR) genes were substantially upregulated in both the peel and finger drop zone during ethylene-induced ripening. Transcriptome analysis and genome-wide profiling of chromatin accessibility and transcription factor (TF) binding revealed that two key regulators of fruit ripening, Musa acuminata NAC-like, Activated by apetala3/Pistillata1 (MaNAP1) and MaMADS1, regulate CWR genes by directly binding to their promoters or by targeting other ripening-related TFs to form a hierarchical regulatory network. Notably, MaNAP1 and MaMADS1 were directly targeted by ETHYLENE INSENSITIVE3 (MaEIN3), and MaNAP1 and MaMADS1 associated with tissue-specific histone modifications, enabling them to integrate MaEIN3-mediated ethylene signaling and undergo epigenetic regulation. Overexpression of MaNAP1, MaMADS1 or other identified regulatory TFs upregulated CWR genes and promoted peel softening. Our findings unveil a MaNAP1-MaMADS1-centered regulatory cascade governing banana peel softening and finger drop, offering potential targets for enhancing banana texture and shelf life.PMID:39422253 | DOI:10.1093/plcell/koae282

Serum concentrations of lipids, ketones and acylcarnitines during the postprandial and fasting state: the Postprandial Metabolism (PoMet) study in healthy young adults

Fri, 18/10/2024 - 12:00
Br J Nutr. 2024 Oct 18:1-11. doi: 10.1017/S0007114524001934. Online ahead of print.ABSTRACTTo improve the interpretation and utilisation of blood lipids, ketones and acylcarnitine concentrations as biomarkers in clinical assessments, more information is needed on their dynamic alterations in response to dietary intake and fasting. The aim of this intervention study was to characterise the changes in serum lipid, ketone and acylcarnitine concentrations 24 h after a standardised breakfast meal. Thirty-four healthy subjects (eighteen males and sixteen females) aged 20-30 years were served a breakfast meal (∼500 kcal, 36 E% fat, 46 E% carbohydrates, 16 E% protein, 2E% fibre), after which they consumed only water for 24 h. Blood samples were drawn before and at thirteen standardised timepoints after the meal. Metabolite concentrations were plotted as a function of time since the completion of the breakfast meal. Results demonstrated that concentrations of HDL-cholesterol and LDL-cholesterol decreased until ∼2 h (-4 % for both), while TAG concentrations peaked at 3 h (+27 %). Acetoacetate and β-hydroxybutyrate were highest 24 h after the meal (+433 and +633 %, respectively). Acetylcarnitine, butyrylcarnitine, hexanoylcarnitine, octanoylcarnitine, decanoylcarnitine and dodecanoylcarnitine reached the lowest values at 60 min (decreases ranging from -47 to -70 %), before increasing and peaking at 24 h after the meal (increases ranging from +86 to +120 %). Our findings suggest that distinguishing between fasting and non-fasting blood samples falls short of capturing the dynamics in lipid, ketone, carnitine and acylcarnitine concentrations. To enhance the utility of serum acylcarnitine analyses, we strongly recommend accounting for the specific time since the last meal at the time of blood sampling.PMID:39422147 | DOI:10.1017/S0007114524001934

Fluxomic, Metabolomic, and Transcriptomic Analyses Reveal Metabolic Responses to Phenazine-1-carboxamide Synthesized in Pseudomonas chlororaphis

Fri, 18/10/2024 - 12:00
J Agric Food Chem. 2024 Oct 18. doi: 10.1021/acs.jafc.4c05558. Online ahead of print.ABSTRACTPhenazine-1-carboxamide (PCN) has been exploited as a successful biopesticide due to its broad-spectrum antifungal activity. We engineered a PCN-overproducing Pseudomonas chlororaphis strain through overexpressing shikimate pathway genes (aroB, aroQ, aroE, and phzC) and deleting negative regulatory genes (relA, fleQ, and pykF). The optimized strain produced 1.92 g/L PCN with a yield of 0.11 g/g glycerol, the highest titer ever reported by using minimal media. To gain deeper insights into the underlying regulatory network, the final strain and the parental strain were examined using three distinct omic data sets. 13C-metabolic flux analysis revealed a substantial flux reconfiguration in the optimized strain, including the activation of the EDEMP cycle, the PP pathway, the glyoxylate shunt, and the shikimate pathway. Metabolomic results indicated that central carbon was rerouted to the shikimate pathway. Transcriptomic data identified global gene expression changes. This study forms the basis for further engineering of strains to achieve outstanding performance.PMID:39422022 | DOI:10.1021/acs.jafc.4c05558

Metabolic Effects of the SGLT2 Inhibitor Dapagliflozin in Heart Failure Across the Spectrum of Ejection Fraction

Fri, 18/10/2024 - 12:00
Circ Heart Fail. 2024 Oct 18:e011980. doi: 10.1161/CIRCHEARTFAILURE.124.011980. Online ahead of print.ABSTRACTBACKGROUND: Mechanisms of benefit with SGLT2is (sodium-glucose cotransporter-2 inhibitors) in heart failure (HF) remain incompletely characterized. Dapagliflozin alters ketone and fatty acid metabolism in HF with reduced ejection fraction though similar effects have not been observed in HF with preserved ejection fraction. We explore whether metabolic effects of SGLT2is vary across the left ventricular ejection fraction spectrum and their relationship with cardiometabolic end points in 2 randomized trials of dapagliflozin in HF.METHODS: Metabolomic profiling of 61 metabolites was performed in 527 participants from DEFINE-HF (Dapagliflozin Effects on Biomarkers, Symptoms and Functional Status in Patients With HF With Reduced Ejection Fraction) and PRESERVED-HF (Dapagliflozin in PRESERVED Ejection Fraction HF; 12-week, placebo-controlled trials of dapagliflozin in HF with reduced ejection fraction and HF with preserved ejection fraction, respectively). Linear regression was used to assess changes in principal components analysis-defined metabolite factors with treatment from baseline to 12 weeks, as well as the relationship between changes in metabolite clusters and HF-related end points.RESULTS: The mean age was 66±11 years, 43% were female, and 33% were self-identified as Black. Two principal components analysis-derived metabolite factors (which were comprised of ketone and short-/medium-chain acylcarnitines) increased with dapagliflozin compared with placebo. Ketosis (defined as 3-hydroxybutyrate >500 μM) was achieved in 4.5% with dapagliflozin versus 1.2% with placebo (P=0.03). There were no appreciable treatment effects on amino acids, including branched-chain amino acids. Increases in several acylcarnitines were consistent across LVEF (Pinteraction>0.10), whereas the ketogenic effect diminished at higher LVEF (Pinteraction=0.01 for 3-hydroxybutyrate). Increases in metabolites reflecting mitochondrial dysfunction (particularly long-chain acylcarnitines) and aromatic amino acids and decreases in branched-chain amino acids were associated with worse HF-related outcomes in the overall cohort, with consistency across treatment and LVEF.CONCLUSIONS: SGLT2is demonstrate common (fatty acid) and distinct (ketogenic) metabolic signatures across the LVEF spectrum. Changes in key pathways related to fatty acid and amino acid metabolism are associated with HF-related end points and may serve as therapeutic targets across HF subtypes.REGISTRATION: URL: https://www.clinicaltrials.gov; Unique Identifiers: NCT03030235 and NCT02653482.PMID:39421941 | DOI:10.1161/CIRCHEARTFAILURE.124.011980

Ferroptosis Mediated Inflammation Promotes Pulmonary Hypertension

Fri, 18/10/2024 - 12:00
Circ Res. 2024 Oct 18. doi: 10.1161/CIRCRESAHA.123.324138. Online ahead of print.ABSTRACTBACKGROUND: Mitochondrial dysfunction, characterized by impaired lipid metabolism and heightened reactive oxygen species generation, results in lipid peroxidation and ferroptosis. Ferroptosis is an inflammatory mode of cell death that promotes complement activation and macrophage recruitment. In pulmonary arterial hypertension (PAH), pulmonary arterial endothelial cells exhibit cellular phenotypes that promote ferroptosis. Moreover, there is ectopic complement deposition and inflammatory macrophage accumulation in the pulmonary vasculature. However, the effects of ferroptosis inhibition on these pathogenic mechanisms and the cellular landscape of the pulmonary vasculature are incompletely defined.METHODS: Multiomics and physiological analyses evaluated how ferroptosis inhibition-modulated preclinical PAH. The impact of adeno-associated virus 1-mediated expression of the proferroptotic protein ACSL (acyl-CoA synthetase long-chain family member) 4 on PAH was determined, and a genetic association study in humans further probed the relationship between ferroptosis and pulmonary hypertension.RESULTS: Ferrostatin-1, a small-molecule ferroptosis inhibitor, mitigated PAH severity in monocrotaline rats. RNA-sequencing and proteomics analyses demonstrated that ferroptosis was associated with PAH severity. RNA-sequencing, proteomics, and confocal microscopy revealed that complement activation and proinflammatory cytokines/chemokines were suppressed by ferrostatin-1. In addition, ferrostatin-1 combatted changes in endothelial, smooth muscle, and interstitial macrophage abundance and gene activation patterns as revealed by deconvolution RNA-sequencing. Ferroptotic pulmonary arterial endothelial cell damage-associated molecular patterns restructured the transcriptomic signature and mitochondrial morphology, promoted the proliferation of pulmonary artery smooth muscle cells, and created a proinflammatory phenotype in monocytes in vitro. Adeno-associated virus 1-Acsl4 induced an inflammatory PAH phenotype in rats. Finally, single-nucleotide polymorphisms in 6 ferroptosis genes identified a potential link between ferroptosis and pulmonary hypertension severity in the Vanderbilt BioVU repository.CONCLUSIONS: Ferroptosis promotes PAH through metabolic and inflammatory mechanisms in the pulmonary vasculature.PMID:39421926 | DOI:10.1161/CIRCRESAHA.123.324138

Metabolomics of 3D cell co-culture reveals alterations in energy metabolism at the cross-talk of colorectal cancer-adipocytes

Fri, 18/10/2024 - 12:00
Front Med (Lausanne). 2024 Oct 3;11:1436866. doi: 10.3389/fmed.2024.1436866. eCollection 2024.ABSTRACTINTRODUCTION: Colorectal cancer (CRC) is the third most incident and the second most lethal malignant tumor. Despite the recognized association between obesity and CRC, further clarification is necessary regarding the lipids that are overexpressed during the development of CRC. In this scenario, the combination of metabolomics and a three-dimensional (3D) co-culture model involving CRC tumor cells and lipids can enhance the knowledge of energy metabolism modifications at the cross-talk between colorectal cancer and adipocytes. This study aimed to screen potential metabolites in the three dimensional (3D) co-culture of CRC and adipocytes by investigating the metabolome composition of this co-culture released into the extracellular space, which is known as the secretome.METHODS: Pre-adipocyte cells (3T3-L1), human colon carcinoma (HT-29), and the 3D co-culture (3T3-L1 + HT-29) were cultured for the secretome obtention. Then, ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) was employed to analyze the metabolomics of each secretome.RESULTS: Overall, 3.731 molecules were detected independent of the cell culture. When comparing the three cultures, 105 molecules presented a statistically significant difference in abundance between groups. Among these molecules, 16 were identified, with a particular emphasis on six lipids (PG 20:0, octadecenal, 3-Hydroxytetracosanoyl-CoA, 9,10-dihydroxy-octadecenoic acid, palmitoleic acid, and PA 18:4) and one amino acid derivative (acetylglutamic acid), which presented significant scores during the partial least-squares discriminant analysis (PLS-DA).DISCUSSION: Although it is too early to determine the possible impact of such molecules in a CRC microenvironment, these results open new avenues for further studies on the energy metabolism at the cross-talk of colorectal cancer adipocytes.PMID:39421865 | PMC:PMC11484090 | DOI:10.3389/fmed.2024.1436866

Stemona alkaloid derivative induce ferroptosis of colorectal cancer cell by mediating carnitine palmitoyltransferase 1

Fri, 18/10/2024 - 12:00
Front Chem. 2024 Oct 3;12:1478674. doi: 10.3389/fchem.2024.1478674. eCollection 2024.ABSTRACTAccumulation of acylcarnitines is a characteristic feature of various metabolic disorders affecting fatty acid metabolism. Despite extensive research, no specific molecules have been identified to induce ferroptosis through the regulation of acylcarnitine metabolism. In this study, acylcarnitine accumulation was identified based on cell metabolomics study after the treatment with Stemona alkaloid derivative (SA-11), which was proved to induce ferroptosis in our previous research. Furthermore, the CPT-1 level was proved to significantly increase, while the CPT-2 level indicated no significant difference, which resulted in the accumulation of acylcarnitine. Besides, the ferroptosis-inducing ability of SA-11 was significantly enhanced by the addition of exogenous acylcarnitine, presumably due to the production of additional ROS. This hypothesis was corroborated by the observation of increased ROS levels in HCT-116 cells treated with SA-11 compared to the control group. These findings suggest that targeting acylcarnitine metabolism, particularly through CPT-1, may offer a novel therapeutic strategy for cancer treatment by enhancing ferroptosis induction.PMID:39421605 | PMC:PMC11484037 | DOI:10.3389/fchem.2024.1478674

Attractant potential of <em>Enterobacter cloacae</em> and its metabolites to <em>Bactrocera dorsalis</em> (Hendel)

Fri, 18/10/2024 - 12:00
Front Physiol. 2024 Oct 3;15:1465946. doi: 10.3389/fphys.2024.1465946. eCollection 2024.ABSTRACTOBJECTIVE: Bactrocera dorsalis (Hendel) has a wide host range. It has been the most important quarantine pest in many countries or regions. Currently, chemical control and bait trapping are mainly used in the monitoring, prevention, and control of B. dorsalis. However, chemical control will cause pollution of the environment and drug resistance of insects. Methyl eugenol, the main attractant currently used, can only attract males of B. dorsalis.METHODS: This study focused on the attractant function and active substances of one key intestinal bacterium, Enterobacter cloacae, which was isolated from B. dorsalis.RESULTS: First, the attraction of the E. cloacae autoclaved supernatant to male and female adults of 0, 6, and 15 days post-emergence was confirmed using a Y-type olfactometer. Subsequently, through metabolome sequencing and bioassays, L-prolinamide was identified and confirmed as the most effective attractant for B. dorsalis. Finally, the synergistic effect of L-prolinamide with the sex attractant ME was validated through field experiments. This study confirmed the attraction effect of E. cloacae on B. dorsalis and also proved the attraction effect of L-prolinamide, the metabolite of E. cloacae, on B. dorsalis. This laid a theoretical foundation for the development of a new attractant and safe, green, and efficient prevention and control technology of B. dorsalis.PMID:39421438 | PMC:PMC11484074 | DOI:10.3389/fphys.2024.1465946

Limitations in metabolic plasticity after traumatic injury are only moderately exacerbated by physical activity restriction

Fri, 18/10/2024 - 12:00
NPJ Metab Health Dis. 2024;2:4. doi: 10.1038/s44324-024-00006-5. Epub 2024 Apr 6.ABSTRACTFollowing traumatic musculoskeletal injuries, prolonged bedrest and loss of physical activity may limit muscle plasticity and drive metabolic dysfunction. One specific injury, volumetric muscle loss (VML), results in frank loss of muscle and is characterized by whole-body and cellular metabolic dysfunction. However, how VML and restricted physical activity limit plasticity of the whole-body, cellular, and metabolomic environment of the remaining uninjured muscle remains unclear. Adult mice were randomized to posterior hindlimb compartment VML or were age-matched injury naïve controls, then randomized to standard or restricted activity cages for 8-wks. Activity restriction in naïve mice resulted in ~5% greater respiratory exchange ratio (RER); combined with VML, carbohydrate oxidation was ~23% greater than VML alone, but lipid oxidation was largely unchanged. Activity restriction combined with VML increased whole-body carbohydrate usage. Together there was a greater pACC:ACC ratio in the muscle remaining, which may contribute to decreased fatty acid synthesis. Further, β-HAD activity normalized to mitochondrial content was decreased following VML, suggesting a diminished capacity to oxidize fatty acids. The muscle metabolome was not altered by the restriction of physical activity. The combination of VML and activity restriction resulted in similar (~91%) up- and down-regulated metabolites and/or ratios, suggesting that VML injury alone is regulating changes in the metabolome. Data supports possible VML-induced alterations in fatty acid metabolism are exacerbated by activity restriction. Collectively, this work adds to the sequala of VML injury, exhausting the ability of the muscle remaining to oxidize fatty acids resulting in a possible accumulation of triglycerides.PMID:39421399 | PMC:PMC11486518 | DOI:10.1038/s44324-024-00006-5

<em>Faecalibacterium prausnitzii</em> A2-165 metabolizes host- and media-derived chemicals and induces transcriptional changes in colonic epithelium in GuMI human gut microphysiological system

Fri, 18/10/2024 - 12:00
Microbiome Res Rep. 2024 May 22;3(3):30. doi: 10.20517/mrr.2024.14. eCollection 2024.ABSTRACTAim: Recently, a GuMI gut microphysiological system has been established to coculture oxygen-intolerant Faecalibacterium prausnitzii (F. prausnitzii) A2-165 with organoids-derived primary human colonic epithelium. This study aims to test if this GuMI system applies to different donors with different healthy states and uses metabolomics to reveal the role of gut microbes in modulating host- and diet-derived molecules in the gut lumen. Methods: Organoids-derived colonic monolayers were generated from an uninflamed region of diverticulitis, ulcerative colitis, and Crohn's disease patients and then integrated into the GuMI system to coculture with F. prausnitzii A2-165 for 2 to 4 days. Apical media was collected for metabolomic analysis. Targeted metabolomics was performed to profile 169 polar chemicals under three conditions: conventional static culture without bacteria, GuMI without bacteria, and GuMI with F. prausnitzii. The barrier function of monolayers was measured using transepithelial resistance. Results: GuMI successfully cocultured patient-derived monolayers and F. prausnitzii for up to 4 days, with active bacterial growth. Introducing flow and oxygen gradient significantly increases the barrier function, while exposure to F. prausnitzii slightly increases the barrier function. Targeted metabolomics screened 169 compounds and detected 76 metabolites, of which 70 significantly differed between at least two conditions. F. prausnitzii significantly modulates the levels of nucleosides, nucleobases, and amino acids on the apical side. Further analysis suggests that F. prausnitzii changes the mRNA level of 260 transcription factor genes in colonic epithelial cells. Conclusion: The GuMI physiomimetic system can maintain the coculture of F. prausnitzii and colonic epithelium from different donors. Together with metabolomics, we identified the modulation of F. prausnitzii in extracellular chemicals and colonic epithelial cell transcription in coculture with human colonic epithelium, which may reflect its function in gut lumen in vivo.PMID:39421254 | PMC:PMC11480719 | DOI:10.20517/mrr.2024.14

DETECTING MULTIPLE REPLICATING SIGNALS USING ADAPTIVE FILTERING PROCEDURES

Fri, 18/10/2024 - 12:00
Ann Stat. 2022 Aug;50(4):1890-1909. doi: 10.1214/21-aos2139. Epub 2022 Aug 25.ABSTRACTReplicability is a fundamental quality of scientific discoveries: we are interested in those signals that are detectable in different laboratories, different populations, across time etc. Unlike meta-analysis which accounts for experimental variability but does not guarantee replicability, testing a partial conjunction (PC) null aims specifically to identify the signals that are discovered in multiple studies. In many contemporary applications, for example, comparing multiple high-throughput genetic experiments, a large number M of PC nulls need to be tested simultaneously, calling for a multiple comparisons correction. However, standard multiple testing adjustments on the M PC p -values can be severely conservative, especially when M is large and the signals are sparse. We introduce AdaFilter, a new multiple testing procedure that increases power by adaptively filtering out unlikely candidates of PC nulls. We prove that AdaFilter can control FWER and FDR as long as data across studies are independent, and has much higher power than other existing methods. We illustrate the application of AdaFilter with three examples: microarray studies of Duchenne muscular dystrophy, single-cell RNA sequencing of T cells in lung cancer tumors and GWAS for metabolomics.PMID:39421244 | PMC:PMC11486506 | DOI:10.1214/21-aos2139

Comparative transcriptomic and metabolomic analysis reveals mechanisms of selenium-regulated anthocyanin synthesis in waxy maize (Zea mays L.)

Fri, 18/10/2024 - 12:00
Front Plant Sci. 2024 Oct 3;15:1466756. doi: 10.3389/fpls.2024.1466756. eCollection 2024.ABSTRACTAnthocyanins in maize (Zea mays L.) kernels determine the plant's color and can enhance its resistance. Selenium (Se) significantly impacts plant growth, development, and secondary metabolic regulation. However, the molecular mechanisms by which Se regulates anthocyanin synthesis in waxy corn remain unclear. This study employed integrated transcriptomic and metabolomic analyses to investigate the mechanisms through which selenium influences anthocyanin synthesis in yellow and purple waxy corn. The results showed that maize varieties with higher anthocyanin content had higher selenium enrichment capacity in their kernels. Under selenium stress, HN2025 exhibited 1,904 more differentially expressed genes (DEGs) and 140 more differential metabolites compared to HN5. The expression levels of anthocyanin synthesis-related genes and transcription factors such as phenylalanine ammonia-lyase, flavonoid 3-hydroxylase (F3H), dihydroflavonol reductase (DFR), chalcone synthase (CHS), cinnamate-4-hydroxylase (C4H), anthocyanin 5,3-O-glucosyltransferases, and anthocyanidin reductase, MYB, and bHLH were strongly induced in HN2025. Metabolomic analysis revealed significant enrichment in anthocyanin biosynthesis, flavonoid and flavonol biosynthesis, glutathione metabolism, phenylalanine biosynthesis, and phenylalanine metabolism under selenium treatment. Three up-regulated PAL genes and one C4H gene were significantly enriched with DAMs in phenylalanine metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis, and anthocyanin biosynthesis, resulting in significant differences between HN5 and HN2025 in selenium-induced anthocyanin metabolism-related pathways. These findings provide a theoretical basis for understanding the effects of selenium on the molecular regulatory mechanisms of anthocyanin biosynthesis in maize kernels.PMID:39421142 | PMC:PMC11484008 | DOI:10.3389/fpls.2024.1466756

Mechanism of ginsenoside Rb<sub>3</sub> against OGD/R damage based on metabonomic and PCR array analyses

Fri, 18/10/2024 - 12:00
Biomed Rep. 2024 Oct 9;21(6):187. doi: 10.3892/br.2024.1875. eCollection 2024 Dec.ABSTRACTIn order to study the mechanisms of ginsenoside Rb3 (G-Rb3) against oxygen-glucose deprivation/reoxygenation (OGD/R) injury in HT22 cells based on metabolomics and PCR array, HT22 cells were randomly divided into control group, model group, G-Rb3 high-dose group (10 µmol/l) and G-Rb3 low-dose group (5 µmol/l). Except for the control group, which was left untreated, the remaining groups were incubated with 10 mmol/l Na2S2O4 in sugar-free DMEM medium for 2 h and then replaced with serum-free high-sugar DMEM medium for 2 h in order to replicate in vitro OGD/R model. Trypan blue staining was used to detect the cell viability; flow cytometry was used to detect apoptosis; western blotting was used to detect the protein expression levels of Bax, Bcl-2 and caspase-3. The metabolomics were used to analyze the differential metabolites of G-Rb3 affecting OGD/R in order to find the relevant metabolic pathways. PCR array assay was performed to identify the expression of the differential genes. G-Rb3 could inhibit HT22 apoptosis according to the result of cell morphology, trypan blue staining and flow cytometry. The levels of Bax and caspase-3 protein expression were decreased, whereas the level of Bcl-2 protein expression was increased after the treatment of G-Rb3. Metabolomics results showed that a total of 31 differential metabolites between OGD/R group and G-Rb3 group, such as guanosine level, was downregulated, the levels of enalaprilat and sorbitol were upregulated, affecting ABC transporters, galactose metabolism, citrate cycle and other related metabolic pathways; according to the result of PCR array, it was observed that G-Rb3 significantly downregulated Trp63, Trp73, Dapk1, Casp14 and Cd70 pro-apoptotic genes. In conclusion, G-Rb3 has a significant protective effect on the OGD/R model simulated in vitro, and the mechanism may be related to the inhibition of apoptosis by affecting metabolites.PMID:39420925 | PMC:PMC11484189 | DOI:10.3892/br.2024.1875

Berberine alters the gut microbiota metabolism and impairs spermatogenesis

Fri, 18/10/2024 - 12:00
Acta Biochim Biophys Sin (Shanghai). 2024 Oct 17. doi: 10.3724/abbs.2024174. Online ahead of print.ABSTRACTBerberine (BBR) is used to treat diarrhea clinically. However, its reproductive toxicity is unclear. This study aims to investigate the impact of BBR on the male reproductive system. Intragastric BBR administration for 14 consecutive days results in a significant decrease in the serum testosterone concentration, epididymal sperm concentration, mating rate and fecundity of male mice. Testicular treatment with testosterone propionate (TP) partially reverses the damage caused by BBR to the male reproductive system. Mechanistically, the decrease in Muribaculaceae abundance in the gut microbiota of mice is the principal cause of the BBR-induced decrease in the sperm concentration. Both fecal microbiota transplantation (FMT) and polyethylene glycol (PEG) treatment demonstrate that Muribaculaceae is necessary for spermatogenesis. The intragastric administration of Muribaculaceae intestinale to BBR-treated mice restores the sperm concentration and testosterone levels. Metabolomic analysis reveals that BBR affects arginine and proline metabolism, of which ornithine level is downregulated. Combined analysis via 16S rRNA metagenomics sequencing and metabolomics shows that Muribaculaceae regulates ornithine level. The transcriptomic results of the testes indicate that the expressions of genes related to the low-density lipoprotein receptor (LDLR)-mediated testosterone synthesis pathway decrease after BBR administration. The transcriptional activity of the Ldlr gene in TM3 cells is increased with increased ornithine supplementation in the culture media, leading to increased testosterone synthesis. Overall, this study reveals an association between a BBR-induced decrease in Muribaculaceae abundance and defective spermatogenesis, providing a prospective therapeutic approach for addressing infertility-related decreases in serum testosterone triggered by changes in the gut microbiota composition.PMID:39420836 | DOI:10.3724/abbs.2024174

<em>Lacticaseibacillus plantarum</em> postbiotics prepared by the combined technique of pasteurization and ultrasound: effective measures to alleviate obesity based on the SCFAs-GPR41/GPR43 signaling pathway

Fri, 18/10/2024 - 12:00
Food Funct. 2024 Oct 18. doi: 10.1039/d4fo03591g. Online ahead of print.ABSTRACTPostbiotics have recently garnered substantial research attention, especially in obesity research. In this study, upon comparing the proliferative effects of three food-derived media-skim milk, soy milk, and almond milk-on Lactiplantibacillus plantarum J26 (L. plantarum J26), skim milk was found to be the most effective. The metabolomic analysis further unveiled that the metabolites produced by the strain cultured in skim milk influenced the greatest number of lipid metabolism-associated pathways. Additionally, to better preserve heat-sensitive substances, ultrasound and pasteurization were combined and used here for inactivation. L. plantarum J26 postbiotics, prepared through pasteurization combined with 400 W ultrasound treatment for 30 min, exhibited the most effectiveness at inhibiting cellular triglyceride accumulation, reducing its level to 0.99 mg per 104 CFU. The prepared postbiotics significantly reduced the increase in multiple indicators, including body weight, blood lipids, and adipokines in obese mice (p < 0.05). Following treatment, liver tissue damage as well as white and brown adipose tissue damage were also markedly improved in obese mice. According to gut microbiota sequencing, the postbiotic intervention increased Lactobacillus and Bifidobacterium abundances but reduced the abundances of obesity-associated Faecalibacterium and Erysipelotrichaceae. Additionally, the postbiotics elevated the acetate, propionate, and butyrate levels by 14.95%, 23.89%, and 8.31%, respectively. High postbiotic doses significantly upregulated the expression of GPR41/GPR43, short-chain fatty acid (SCFA) receptor genes, in the liver and adipose tissues (p < 0.05), thus correcting the obesity-induced anomalies in the SCFAs-GPR41/GPR43 signaling pathway. This research offers compelling evidence supporting the use of edible postbiotics in targeted obesity regulation.PMID:39420807 | DOI:10.1039/d4fo03591g

Pages