Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Retinal G-protein-coupled receptor deletion exacerbates AMD-like changes via the PINK1-parkin pathway under oxidative stress

Mon, 28/10/2024 - 11:00
FASEB J. 2024 Oct;38(20):e70135. doi: 10.1096/fj.202401160RR.ABSTRACTThe intake of high dietary fat has been correlated with the progression of age-related macular degeneration (AMD), affecting the function of the retinal pigment epithelium through oxidative stress. A high-fat diet (HFD) can lead to lipid metabolism disorders, excessive production of circulating free fatty acids, and systemic inflammation by aggravating the degree of oxidative stress. Deletion of the retinal G-protein-coupled receptor (RGR-d) has been identified in drusen. In this study, we investigated how the RGR-d exacerbates AMD-like changes under oxidative stress, both in vivo and in vitro. Fundus atrophy became evident, at 12 months old, particularly in the RGR-d + HFD group, and fluorescence angiography revealed narrower retinal vessels and a reduced perfusion area in the peripheral retina. Although rod electroretinography revealed decreasing trends in the a- and b-wave amplitudes in the RGR-d + HFD group at 12 months, the changes were not statistically significant. Mice in the RGR-d + HFD group showed a significantly thinner and more fragile retinal morphology than those in the WT + HFD group, with disordered and discontinuous pigment distribution in the RGR-d + HFD mice. Transmission electron microscopy revealed a thickened Bruch's membrane along the choriocapillaris endothelial cell wall in the RGR-d + HFD mice, and the outer nuclear layer structure appeared disorganized, with reduced nuclear density. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated significantly lower levels of 25(OH)-vitamin D3 metabolites in the RGR-d + HFD group. Under oxidative stress, RGR-d localized to the mitochondria and reduced the levels of the PINK1-parkin pathway. RGR-d mice fed an HFD were used as a new animal model of dry AMD. Under high-fat-induced oxidative stress, RGR-d accumulated in the mitochondria, disrupting normal mitophagy and causing cellular damage, thus exacerbating AMD-like changes both in vivo and in vitro.PMID:39467145 | DOI:10.1096/fj.202401160RR

Dexmedetomidine Ameliorates Myocardial Ischemia-Reperfusion Injury by Inhibiting MDH2 Lactylation via Regulating Metabolic Reprogramming

Mon, 28/10/2024 - 11:00
Adv Sci (Weinh). 2024 Oct 28:e2409499. doi: 10.1002/advs.202409499. Online ahead of print.ABSTRACTMyocardial ischemia-reperfusion injury (MIRI) significantly worsens the outcomes of patients with cardiovascular diseases. Dexmedetomidine (Dex) is recognized for its cardioprotective properties, but the related mechanisms, especially regarding metabolic reprogramming, have not been fully clarified. A total of 60 patients with heart valve disease are randomly assigned to Dex or control group. Blood samples are collected to analyze cardiac injury biomarkers and metabolomics. In vivo and vitro rat models of MIRI are utilized to assess the effects of Dex on cardiac function, lactate production, and mitochondrial function. It is found that postoperative CK-MB and cTNT levels are significantly lower in the Dex group. Metabolomics reveals that Dex regulates metabolic reprogramming and reduces lactate level. In Dex-treated rats, the myocardial infarction area is reduced, and myocardial contractility is improved. Dex inhibits glycolysis, reduces lactate, and improves mitochondrial function following MIRI. Lactylation proteomics identifies that Dex reduces the lactylation of Malate Dehydrogenase 2(MDH2), thus alleviating myocardial injury. Further studies reveal that MDH2 lactylation induces ferroptosis, leading to MIRI by impairing mitochondrial function. Mechanistic analyses reveal that Dex upregulates Nuclear Receptor Subfamily 3 Group C Member 1(NR3C1) phosphorylation, downregulates Pyruvate Dehydrogenase Kinase 4 (PDK4), and reduces lactate production and MDH2 lactylation. These findings provide new therapeutic targets and mechanisms for the treatment for MIRI.PMID:39467114 | DOI:10.1002/advs.202409499

Cardiac Urea Cycle Activation by Time-Restricted Feeding Protects Against Pressure Overload-Induced Heart Failure

Mon, 28/10/2024 - 11:00
Adv Sci (Weinh). 2024 Oct 28:e2407677. doi: 10.1002/advs.202407677. Online ahead of print.ABSTRACTHeart failure is a leading cause of mortality worldwide, necessitating the development of novel therapeutic and lifestyle interventions. Recent studies highlight a potential role of time-restricted feeding (TRF) in the prevention and treatment of cardiac diseases. Here, it is found that TRF protected against heart failure at different stages in mice. Metabolomic profiling revealed that TRF upregulated most circulating amino acids, and amino acid supplementation protected against heart failure. In contrast, TRF showed a mild effect on cardiac amino acid profile, but increased cardiac amino acid utilization and activated the cardiac urea cycle through upregulating argininosuccinate lyase (ASL) expression. Cardiac-specific ASL knockout abolished the cardioprotective effects afforded by TRF. Circulating amino acids also protected against heart failure through activation of the urea cycle. Additionally, TRF upregulated cardiac ASL expression through transcription factor Yin Yang 1, and urea cycle-derived NO contributes to TRF-afforded cardioprotection. Furthermore, arteriovenous gradients of circulating metabolites across the human hearts were measured, and found that amino acid utilization and urea cycle activity were impaired in patients with decreased cardiac function. These results suggest that TRF is a promising intervention for heart failure, and highlight the importance of urea cycle in regulation of cardiac function.PMID:39467073 | DOI:10.1002/advs.202407677

Transcriptomic and metabolomic reveal OsCOI2 as the jasmonate-receptor master switch in rice root

Mon, 28/10/2024 - 11:00
PLoS One. 2024 Oct 28;19(10):e0311136. doi: 10.1371/journal.pone.0311136. eCollection 2024.ABSTRACTJasmonate is an essential phytohormone involved in plant development and stress responses. Its perception occurs through the CORONATINE INSENSITIVE (COI) nuclear receptor allowing to target the Jasmonate-ZIM domain (JAZ) repressors for degradation by the 26S proteasome. Consequently, repressed transcription factors are released and expression of jasmonate responsive genes is induced. In rice, three OsCOI genes have been identified, OsCOI1a and the closely related OsCOI1b homolog, and OsCOI2. While the roles of OsCOI1a and OsCOI1b in plant defense and leaf senescence are well-established, the significance of OsCOI2 in plant development and jasmonate signaling has only emerged recently. To unravel the role of OsCOI2 in regulating jasmonate signaling, we examined the transcriptomic and metabolomic responses of jasmonate-treated rice lines mutated in both the OsCOI1a and OsCOI1b genes or OsCOI2. RNA-seq data highlight OsCOI2 as the primary driver of the extensive transcriptional reprogramming observed after a jasmonate challenge in rice roots. A series of transcription factors exhibiting an OsCOI2-dependent expression were identified, including those involved in root development or stress responses. OsCOI2-dependent expression was also observed for genes involved in specific processes or pathways such as cell-growth and secondary metabolite biosynthesis (phenylpropanoids and diterpene phytoalexins). Although functional redundancy exists between OsCOI1a/b and OsCOI2 in regulating some genes, oscoi2 plants generally exhibit a weaker response compared to oscoi1ab plants. Metabolic data revealed a shift from the primary metabolism to the secondary metabolism primarily governed by OsCOI2. Additionally, differential accumulation of oryzalexins was also observed in oscoi1ab and oscoi2 lines. These findings underscore the pivotal role of OsCOI2 in jasmonate signaling and suggest its involvement in the control of the growth-defense trade-off in rice.PMID:39466751 | DOI:10.1371/journal.pone.0311136

Supramolecular Self-Assembled Hydrogel for Antiviral Therapy through Glycyrrhizic Acid-Enhanced Zinc Absorption and Intracellular Accumulation

Mon, 28/10/2024 - 11:00
ACS Appl Mater Interfaces. 2024 Oct 28. doi: 10.1021/acsami.4c15042. Online ahead of print.ABSTRACTRespiratory syncytial virus (RSV) is a common pathogen that causes respiratory infections in infants and children worldwide, significantly impacting hospitalization rates in this age group. Zinc ions are considered to have broad-spectrum antiviral potential against RNA viruses, including RSV. However, poor organism absorption and low intracellular accumulation of zinc require repeated high-dose supplementation, which may lead to unnecessary toxic side effects. In this research, a Zn2+-mediated glycyrrhizinic acid (GA)-based hydrogel (ZnGA Gel) was introduced and potentially developed to be a clinically available drug candidate for RSV therapy. ZnGA Gel was fabricated based on the cooperation of two potential RSV inhibiting molecules (Zn2+ and GA), where Zn2+ promoted self-assembly of GA and reduced its gel concentration and GA promoted zinc absorption and distribution in lung tissue in vivo. The facile construction of supramolecular hydrogel by the self-assembled coordination complex made it an injectable, temperature-sensitive, and pH-responsive controlled-release drug delivery for Zn2+. Most importantly, GA was observed to enhance organism absorption and intracellular accumulation of Zn2+ and was identified as a zinc ionophore for the first time. GA can colonize on the cell membrane and disturb cell membrane potential, resulting in an enhanced cell membrane permeability. In the presence of GA, more than 4.7-fold increasing Zn2+ concentrations materialized in the intracellular cytoplasm, compared to Zn2+ alone administration. This intracellular Zn2+ accumulation directly boosted the antiviral activities through improved inhibition of RSV replication-associated proteins and significantly inhibited RSV replication. Oral administration of ZnGA Gel on the RSV-infected mice model achieved an ideal therapeutic effect by effectively lowering viral load in the lungs, alleviating lung injury symptoms, and reducing inflammatory cell infiltration at pathological sites. The mechanism involved the inhibition of RSV replication-related proteins, aligning with our in vitro results. Additionally, ZnGA Gel had demonstrated biocompatibility, and reasonable supplementation of zinc was acceptable and effective for infants and children in clinical practice. Hence, the ZnGA Gel developed by us holds promise as an effective anti-RSV medicine in the future.PMID:39466722 | DOI:10.1021/acsami.4c15042

Metabolomic fingerprinting of milk fever cows: Pre- and postpartum metabolite alterations

Mon, 28/10/2024 - 11:00
J Vet Intern Med. 2024 Oct 28. doi: 10.1111/jvim.17217. Online ahead of print.ABSTRACTBACKGROUND: Milk fever (MF), a metabolic disorder in dairy cows characterized by low blood calcium concentrations postpartum, is well-recognized clinically. However, comprehensive data on the alteration of metabolites associated with this condition remains sparse.HYPOTHESIS: Delineate serum metabolite profiles and metabolic pathways preceding, coinciding with, and after the onset of MF.ANIMALS: Twenty-six cows, including 20 healthy cows and 6 cows initially affected by MF. Because of culling, the number of MF-affected cows decreased to 4 at MF week, +4 weeks, and +8 weeks postpartum.METHODS: A nested case-control longitudinal study was conducted, with blood samples collected at -8 and -4 weeks prepartum, MF week, and +4 and +8 weeks postpartum. Serum analysis utilized direct injection/liquid chromatography/tandem mass spectrometry (DI/LC/MS/MS) techniques.RESULTS: Key findings included the identification of diverse metabolites such as hexose, amino acids, phosphatidylcholines, lysophosphatidylcholines, and sphingomyelin, which varied between studied groups (P < .05). The most marked metabolic alterations were observed 4 weeks prepartum. In total, 42, 56, 38, 29, and 24 metabolites distinguished the MF group at the respective time points (P < .05). Additionally, 33 metabolic pathways, including amino acid, antioxidant metabolism, fatty acid degradation, and carbohydrate processing, were impacted (P < .05).CONCLUSIONS AND CLINICAL IMPORTANCE: Metabolic disruptions in dairy cows begin several weeks before the clinical manifestation of MF and persist up to 8 weeks postpartum. These findings emphasize the complexity of MF, extending beyond only hypocalcemia and indicate the necessity for preemptive monitoring in dairy herd management.PMID:39466655 | DOI:10.1111/jvim.17217

Multiomics Profiling of Plasma Reveals Molecular Alterations Prior to a Diagnosis with Stroke Among Chinese Hypertension Patients

Mon, 28/10/2024 - 11:00
J Proteome Res. 2024 Oct 28. doi: 10.1021/acs.jproteome.4c00559. Online ahead of print.ABSTRACTWe aimed to investigate the correlation between plasma proteins and metabolites and the occurrence of future strokes using mass spectrometry and bioinformatics as well as to identify other biomarkers that could predict stroke risk in hypertensive patients. In a nested case-control study, baseline plasma samples were collected from 50 hypertensive subjects who developed stroke and 50 gender-, age- and body mass index-matched controls. Plasma untargeted metabolomics and data independent acquisition-based proteomics analysis were performed in hypertensive patients, and 19 metabolites and 111 proteins were found to be differentially expressed. Integrative analyses revealed that molecular changes in plasma indicated dysregulation of protein digestion and absorption, salivary secretion, and regulation of actin cytoskeleton, along with significant metabolic suppression. C4BPA, Caprolactam, Col15A1, and HBB were identified as predictors of stroke occurrence, and the Support Vector Machines (SVM) model was determined to be the optimal predictive model by integrating six machine-learning classification models. The SVM model showed strong performance in both the internal validation set (area under the curve [AUC]: 0.977, 95% confidence interval [CI]: 0.941-1.000) and the external independent validation set (AUC: 0.973, 95% CI: 0.921-0.999).PMID:39466185 | DOI:10.1021/acs.jproteome.4c00559

Blood-based circulating biomarkers for prediction of immune-checkpoint inhibitors efficacy in renal cell carcinoma

Mon, 28/10/2024 - 11:00
Explor Target Antitumor Ther. 2024;5(6):1199-1222. doi: 10.37349/etat.2024.00271. Epub 2024 Sep 20.ABSTRACTImmune checkpoint inhibitors (ICI)-based combinations have become the standard first-line treatment for advanced clear cell renal cell carcinoma (ccRCC). Despite significant improvements in survival and the achievement of sustained long-term responses, a subset of patients remains refractory to ICI, and most will eventually develop resistance. Thus, identifying predictive biomarkers for ICI efficacy and resistance is essential for optimizing therapeutic strategies. Up to now, tissue-based biomarkers have not been successful as predictive biomarkers in RCC. Circulating blood-based biomarkers offer a promising alternative. These biomarkers, including circulating immune cells, soluble factors, tumor-derived markers, and those based on metabolomics, are less invasive, offer reproducibility over time, and provide a comprehensive assessment of tumor biology and patient immune status, as well as allow dynamic monitoring during treatment. This review aims to evaluate the current evidence on the different candidate circulating biomarkers being investigated for their potential to predict ICI efficacy in RCC patients.PMID:39465007 | PMC:PMC11502076 | DOI:10.37349/etat.2024.00271

Dietary resveratrol improves immunity and antioxidant defense in ewes by regulating the rumen microbiome and metabolome across different reproductive stages

Mon, 28/10/2024 - 11:00
Front Immunol. 2024 Oct 11;15:1462805. doi: 10.3389/fimmu.2024.1462805. eCollection 2024.ABSTRACTINTRODUCTION: Resveratrol (Res), a natural plant antitoxin polyphenol, is widely used in animal husbandry due to its antioxidant and anti-inflammatory properties, and current research has focused on humans, sows, and female mice. This study aimed to analyze the effects of dietary Res supplementation in ewes on antioxidant activity, immune responses, hormone levels, rumen microbiota and metabolites across various reproductive stages (estrus, pregnancy, and lactation).METHODS: Twenty-four healthy ewe lambs (Hu sheep, 2 months old) with a similar body weight (BW) (mean: 21.79 ± 2.09 kg) were selected and randomly divided into two groups: the control group (Con) and the Res group (Res). The Res group received 10 mg/kg Res (based on BW) in addition to their basal diet.RESULTS: Res increased the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) in ewes at sexual maturity (p < 0.05). Additionally, Res supplementation induced significant increases in serum glutathione peroxidase (GSH-Px), IgG, FSH, and LH levels during estrus (p < 0.05); serum IgA, IgG and IgM during pregnancy and lactation (p < 0.05); and serum LH, glucose, GSH-Px, and catalase (CAT) levels during lactation (p < 0.05). Meanwhile, serum interleukin 1β (IL-1β) (p =0.005) and cholesterol levels (p = 0.041) during the lactation stage decreased following Res supplementation. Notably, colostrum IgA, IgG, and fat concentrations were significantly higher in the Res group than in the Con group (p < 0.05). Moreover, Res altered the rumen microbiota in ewes. Specifically, the relative abundance of Prevotella (p < 0.05) during pregnancy and Rikenellaceae_RC9_gut_group (p < 0.001) during lactation were significantly increased in ewes under Res treatment. The abundance of Rikenellaceae_RC9_gut_group was positively correlated with the levels of Ig A, Ig M, E2, FSH, LH, GSH-PX, and CAT. Additionally, Res altered the activity of metabolic pathways such as progesterone-mediated oocyte maturation, the estrogen signaling pathway, ovarian steroidogenesis, and the AMPK signaling pathway, and the levels of AICAR and 2-hydroxyestradiol metabolites, both during pregnancy and lactation.DISCUSSION: There findings show that Res can improve health, antioxidant status, and immune activity throughout the reproductive cycle in ewes by regulating rumen microorganisms and metabolites.PMID:39464877 | PMC:PMC11502325 | DOI:10.3389/fimmu.2024.1462805

Effects of exposure to trihalomethanes in swimming pool waters on metabolomics profile: a randomized parallel design trial

Mon, 28/10/2024 - 11:00
J Environ Health Sci Eng. 2024 Jul 10;22(2):533-544. doi: 10.1007/s40201-024-00912-2. eCollection 2024 Dec.ABSTRACTBiological mechanisms of exposure to Trihalomethanes (THMs) in swimming pools remain unclear. Investigation of short-term changes in metabolomic profiles due to exposure to THMs during swimming can help to understand the health effects-related mechanisms. With this in view, we aimed to assess exposure of swimmers to THMs in chlorine and ozone-chlorine swimming pools using the metabolomics approach from September 2020 to January 2021 in Tehran. Two parallel panels of 29 healthy adult subjects swam over 60 min in either of swimming pools. Blood samples were collected before and 2 h after swimming to assess metabolomic profile using Hydrogen-Nuclear Magnetic Resonance Spectroscopy (H-NMR). Differential metabolites between the two groups were identified by multivariate analysis methods such as Orthogonal Partial Least-Squares Discriminant Analysis (OPLS-DA) and Random Forest (RF). The levels of THMs in exhaled air as a biomarker of exposure and the metabolic profile as a biomarker of the effect changed significantly between two participants of swimming pools. Based on the significant metabolites, the biochemical pathways were identified by the method of Metabolite Setts Enrichment Analysis (MSEA) and by using the Metaboanalyst platform. The pathways of tryptophan metabolism, galactose metabolism and fructose and mannose metabolism were the most important biochemically significant pathways in individuals after exposure to THMs. Finally, findings from metabolic changes in our study indicate that exposure to THMs in swimming pools can activate the mechanisms of central nervous system disorders, increased uric acid, increased risk of bladder cancer and oxidative stress.SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40201-024-00912-2.PMID:39464829 | PMC:PMC11499471 | DOI:10.1007/s40201-024-00912-2

Untargeted Metabolite Profiling of Wild and <em>In Vitro</em> Propagated Sabah Jewel Orchid <em>Macodes limii</em> J.J. Wood &amp; A.L. Lamb

Mon, 28/10/2024 - 11:00
Trop Life Sci Res. 2024 Oct;35(3):23-56. doi: 10.21315/tlsr2024.35.3.2. Epub 2024 Oct 7.ABSTRACTMacodes limii J.J. Wood & A.L. Lamb is a terrestrial jewel orchid native to Sabah, recognised for its sparkling golden-yellow venations, uniformly distributed on its leaves. Despite its high ornamental value, the exploration of the plant's medicinal potential remains ambiguous. The current study was conducted to gain a fundamental understanding of the metabolite composition and regulation in M. limii plants from two different growing environments: wild and in vitro cultivation, as well as to analyse their phytochemical contents and antioxidant activity. The metabolite profiling of the M . limii plant extracts through gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis has tentatively identified compounds from various classes including sugars, carbohydrates, sugar alcohols, amino acids, organic acids, phenolic derivatives and lipid and lipid-like compounds. Subsequently, the multivariate statistical analysis confirmed the existence of significant metabolite variations across distinct growth environments. Notably, the leaf extract derived from wild-grown plants displayed the highest levels of total phenolic and flavonoid content, contributing significantly to its higher antioxidant activity as measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The discovery has offered a fundamental understanding of the metabolites in M. limii jewel orchids, indicating that in vitro regenerated plants may represent a viable alternative for further investigating their therapeutic potential, thus helping to alleviate the impact on wild populations.PMID:39464667 | PMC:PMC11507973 | DOI:10.21315/tlsr2024.35.3.2

A review of genetic resources and trends of omics applications in donkey research: focus on China

Mon, 28/10/2024 - 11:00
Front Vet Sci. 2024 Oct 11;11:1366128. doi: 10.3389/fvets.2024.1366128. eCollection 2024.ABSTRACTOmics methodologies, such as genomics, transcriptomics, proteomics, metabolomics, lipidomics and microbiomics, have revolutionized biological research by allowing comprehensive molecular analysis in livestock animals. However, despite being widely used in various animal species, research on donkeys has been notably scarce. China, renowned for its rich history in donkey husbandry, plays a pivotal role in their conservation and utilization. China boasts 24 distinct donkey breeds, necessitating conservation efforts, especially for smaller breeds facing extinction threats. So far, omics approaches have been employed in studies of donkey milk and meat, shedding light on their composition and quality. Similarly, omics methods have been utilized to explore the molecular basis associated with donkey growth, meat production, and quality traits. Omics analysis has also unraveled the critical role of donkey microbiota in health and nutrition, with gut microbiome studies revealing associations with factors such as pregnancy, age, transportation stress, and altitude. Furthermore, omics applications have addressed donkey health issues, including infectious diseases and reproductive problems. In addition, these applications have also provided insights into the improvement of donkey reproductive efficiency research. In conclusion, omics methodologies are essential for advancing knowledge about donkeys, their genetic diversity, and their applications across various domains. However, omics research in donkeys is still in its infancy, and there is a need for continued research to enhance donkey breeding, production, and welfare in China and beyond.PMID:39464628 | PMC:PMC11502298 | DOI:10.3389/fvets.2024.1366128

Multiomics Reveals a Mechanism: Glycogen Synthesis, Galactose Metabolism, and Ethanol Degradation Pathways, the Durable Role of Neutralizing Antibodies in Preventing COVID-19

Mon, 28/10/2024 - 11:00
ACS Omega. 2024 Oct 10;9(42):42757-42765. doi: 10.1021/acsomega.4c04047. eCollection 2024 Oct 22.ABSTRACTSince the emergence and rapid dissemination of Coronavirus disease 2019 (COVID-19), over 774 million individuals globally have achieved recovery to today. There is some case flashing into here and there all over the world. Neutralizing Antibody (NAb) against Severe Acute Respiratory Syndrome Coronavirus-Type 2 (SARS-CoV-2) play a paramount role in conferring effective and lasting protection for several months. This protective effect decreases with time thus increasing the chance of reinfection. Therefore, we can provide the body with a lasting protective effect by maintaining NAb level. However, how to maintain Nab level remains elusive. To address this question, we recruited 80 patients with confirmed COVID-19 and collected 480 consecutive blood samples and performed NAb testing six months after their recovery. The NAb level were categorized into two groups: a low-titer NAb group (≤20) and a high-titer NAb group (>20). To achieve a comprehensive understanding of the changes in NAb level, 16 serum samples were randomly selected for an untargeted metabolomic analysis, whereas 9 samples were designated for a label-free proteomic analysis. We successfully identified differentially expressed 751 metabolites and 845 proteins. In both the low and high NAb titer groups, we identified three key differential proteins, phosphoglucose translocase 2(PGM2), UDP-Glc 4-epimerase (GALE), and alcohol dehydrogenase 1B (ADH1B), that play important roles in fluctuating NAb level through the glycogen synthesis, galactose metabolism and ethanol degradation pathways. These three key differential proteins may serve as potential biomarkers for maintaining NAb level and enhancing immune protection in patients recovering from COVID-19.PMID:39464477 | PMC:PMC11500150 | DOI:10.1021/acsomega.4c04047

Integrated gut microbiome and metabolomic analyses elucidate the therapeutic mechanisms of Suanzaoren decoction in insomnia and depression models

Mon, 28/10/2024 - 11:00
Front Neurosci. 2024 Oct 11;18:1459141. doi: 10.3389/fnins.2024.1459141. eCollection 2024.ABSTRACTInsomnia and depression are psychiatric disorders linked to substantial health burdens. The gut microbiome and metabolomic pathways are increasingly recognized as key contributors to these conditions' pathophysiology. Suanzaoren Decoction (SZRD), a traditional Chinese herbal formulation, has demonstrated significant therapeutic benefits for both insomnia and depression. This study aims to elucidate the mechanistic effects of SZRD on insomnia and depression by integrating gut microbiome and metabolomic analyses and to assess the differential impacts of SZRD dosages. Using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS), we identified 66 chemical constituents within SZRD. Behavioral assays indicated that low-dose SZRD (LSZRD) significantly ameliorated insomnia symptoms in rat models, whereas high-dose SZRD (HSZRD) markedly improved depressive behaviors. 16S rRNA sequencing revealed that SZRD modulated gut microbiome dysbiosis induced by insomnia and depression, characterized by an increased abundance of short-chain fatty acid (SCFA)-producing genera. Metabolomic profiling demonstrated reduced plasma amino acid metabolites and disrupted γ-aminobutyric acid (GABA) and L-glutamic acid metabolism in the hippocampus of affected rats. SZRD administration restored fecal SCFA levels and ameliorated metabolic imbalances in both plasma and hippocampal tissues. These findings underscore the pivotal role of gut microbiome modulation and metabolic regulation in the therapeutic effects of SZRD, providing a scientific basis for its use in treating insomnia and depression.PMID:39464422 | PMC:PMC11502468 | DOI:10.3389/fnins.2024.1459141

Dysbiosis index and fecal concentrations of sterols, long-chain fatty acids and unconjugated bile acids in dogs with inflammatory protein-losing enteropathy

Mon, 28/10/2024 - 11:00
Front Microbiol. 2024 Oct 11;15:1433175. doi: 10.3389/fmicb.2024.1433175. eCollection 2024.ABSTRACTINTRODUCTION: Canine protein-losing enteropathy (PLE) is a syndrome characterized by gastrointestinal loss of proteins. While fecal microbiome and metabolome perturbations have been reported in dogs with chronic enteropathy, they have not been widely studied in dogs with PLE. Therefore, the study aims were to investigate gut microbiome and targeted fecal metabolites in dogs with inflammatory PLE (iPLE) and evaluate whether treatment affects these changes at short-term follow-up.METHODS: Thirty-eight dogs with PLE and histopathological evidence of gastrointestinal inflammation and 47 healthy dogs were enrolled. Fecal samples were collected before endoscopy (T0) and after one month of therapy (T1). Microbiome and metabolome alterations were investigated using qPCR assays (dysbiosis index, DI) and gas chromatography/mass spectrometry (long-chain fatty acids, sterols, unconjugated bile acids), respectively.RESULTS: Median (min-max) DI of iPLE dogs was 0.4 (-5.9 to 7.7) and was significantly higher (p < 0.0001) than median DI in healthy dogs [-2.0 (-6.0 to 5.3)]. No significant associations were found between DI and selected clinicopathological variables. DI did not significantly differ between T0 and T1. In iPLE dogs, at T0, myristic, palmitic, linoleic, oleic, cis-vaccenic, stearic, arachidonic, gondoic, docosanoic, erucic, and nervonic acids were significantly higher (p < 0.0001) than healthy dogs. In iPLE dogs, oleic acid (p = 0.044), stearic acid (p = 0.013), erucic acid (p = 0.018) and nervonic acid (p = 0.002) were significantly decreased at T1. At T0, cholesterol and lathosterol (p < 0.0001) were significantly higher in iPLE dogs compared to healthy dogs, while total measured phytosterols were significantly lower (p = 0.001). No significant differences in total sterols, total phytosterols and total zoosterols content were found at T1, compared to T0. At T0, total primary bile acids and total secondary bile acids did not significantly differ between healthy control dogs and iPLE dogs. No significant differences in fecal bile acid content were found at T1.DISCUSSION: Dysbiosis and lipid metabolism perturbations were observed in dogs with iPLE. Different therapeutic protocols lead to an improvement of some but not all metabolome perturbations at short-term follow-up.PMID:39464397 | PMC:PMC11505111 | DOI:10.3389/fmicb.2024.1433175

Diethyl aminoethyl hexanoate reprogramed accumulations of organic metabolites associated with water balance and metabolic homeostasis in white clover under drought stress

Mon, 28/10/2024 - 11:00
Front Plant Sci. 2024 Oct 11;15:1430752. doi: 10.3389/fpls.2024.1430752. eCollection 2024.ABSTRACTDiethyl aminoethyl hexanoate (DA-6) serving as a non-toxic and low-cost plant growth regulator is used for improving plant growth and stress tolerance, but the DA-6-mediated organic metabolites remodeling in relation to drought tolerance is not well documented in crops. The aims of the present study were to evaluate impacts of DA-6 on physiological functions including osmotic adjustment, photochemical efficiency, oxidative damage, and cell membrane stability as well as organic metabolites remodeling in white clover (Trifolium repens) leaves based on the analysis of metabolomics. Plants were foliarly treated with or without DA-6 and subsequently exposed to drought stress for 8 days. Results demonstrated that foliar application of DA-6 (1.5 mM) could significantly ameliorate drought tolerance, which was linked with better leaf water status, photosynthetic performance, and cell membrane stability as well as lower oxidative injury in leaves. Metabolic profiling of organic metabolites identified a total of 59 metabolites including 17 organic acids, 20 sugars, 12 alcohols, and 10 other metabolites. In response to drought stress, the DA-6 induced accumulations of many sugars and sugar alcohols (erythrulose, arabinose, xylose, inosose, galactose, talopyranose, fucose, erythritol, and ribitol), organic acids (propanoic acid, 2,3-dihydroxybutanoic acid, palmitic acid, linolenic acid, and galacturonic acid), and other metabolites (2-oxazoline, silane, and glycine) in white clover. These altered metabolites induced by the DA-6 could perform critical functions in maintenances of osmo-protection, osmotic adjustment, redox homeostasis, cell wall structure and membrane stability when white clover suffered from water deficit. In addition, the campesterol and stigmasterol significantly accumulated in all plants in spite of the DA-6 pretreatment under drought stress, which could be an important adaptive response to water deficit due to beneficial roles of those two metabolites in regulating cell membrane stability and antioxidant defense. Present findings provide new evidence of DA-6-regulated metabolic homeostasis contributing to drought tolerance in leguminous plants.PMID:39464286 | PMC:PMC11502329 | DOI:10.3389/fpls.2024.1430752

Transcriptomic and sugar metabolic analysis reveals molecular mechanisms of peach gummosis in response to <em>Neofusicoccum parvum</em> infection

Mon, 28/10/2024 - 11:00
Front Plant Sci. 2024 Oct 11;15:1478055. doi: 10.3389/fpls.2024.1478055. eCollection 2024.ABSTRACTPeach gummosis, a devastating disease caused by Neofusicoccum parvum, significantly shortens peach tree lifespan and reduces the yield of peach trees. Despite its impact, the molecular mechanism underlying this disease remains largely unexplored. In this study, we used RNA-seq, sugar metabolism measurements, and an integrated transcriptional and metabolomic analysis to uncover the molecular events driving peach gummosis. Our results revealed that N. parvum infection drastically altered the transcripts of cell wall degradation-related genes, the log2Fold change in the transcript level of Prupe.1G088900 encoding xyloglucan endotransglycosylase decreased 2.6-fold, while Prupe.6G075100 encoding expansin increased by 2.58-fold at 12 hpi under N. parvum stress. Additionally, sugar content analysis revealed an increase in maltose, sucrose, L-rhamnose, and inositol levels in the early stages of infection, while D-galactose, D-glucose, D-fructose consistently declined as gummosis progressed. Key genes related to cell wall degradation and starch degradation, as well as UDP-sugar biosynthesis, were significantly upregulated in response to N. parvum. These findings suggest that N. parvum manipulates cell wall degradation and UDP-sugar-related genes to invade peach shoot cells, ultimately triggering gum secretion. Furthermore, weighted gene co-expression network analysis (WGCNA) identified two transcription factors, ERF027 and bZIP9, as central regulators in the downregulated and upregulated modules, respectively. Overall, this study enhances our understanding of the physiological and molecular responses of peach trees to N. parvum infection and provide valuable insights into the mechanisms of peach defense against biotic stresses.PMID:39464283 | PMC:PMC11503026 | DOI:10.3389/fpls.2024.1478055

Multi-omics approach to reveal follicular metabolic changes and their effects on oocyte competence in PCOS patients

Mon, 28/10/2024 - 11:00
Front Endocrinol (Lausanne). 2024 Oct 11;15:1426517. doi: 10.3389/fendo.2024.1426517. eCollection 2024.ABSTRACTBACKGROUND: Polycystic ovary syndrome (PCOS) is a common heterogeneous disorder linked with endocrine and metabolic disturbances. The underlying mechanism of PCOS, especially its effect on oocyte competence, remains unclear. The study aimed to identify abnormal follicular metabolic changes using a multi-omics approach in follicular fluid from PCOS patients and to determine their effects on oocyte competence.METHODS: A total of 36 women with PCOS and 35 women without PCOS who underwent in vitro fertilization and embryo transfer were included in the study. Cumulus cells and follicular fluid samples were collected. Follicular fluid samples underwent metabolomic analysis, while cumulus cell clusters from the same patients were assessed using transcriptomic analysis. Clinical information of patients and assisted reproductive technology (ART) results were recorded. Transcriptomics and metabolomics were integrated to identify disrupted pathways, and receiver operation characteristics (ROC) analysis was conducted to identify potential diagnostic biomarkers for PCOS. Pearson correlation analysis was conducted to assess the relationship between metabolites in follicular fluid and oocyte competence (fertilization and early embryo development potential).RESULTS: Through multi-omics analysis, we identified aberrantly expressed pathways at both transcriptional and metabolic levels, such as the citrate cycle (TCA cycle), oxidative phosphorylation, the cAMP signaling pathway, the mTOR signaling pathway, and steroid hormone biosynthesis. Ten candidate metabolites were identified based on metabolic profiling data from these altered pathways. Phytic acid, succinic acid, 2'-deoxyinosine triphosphate, and 4-trimethylammoniobutanoic acid in the follicular fluid exhibited high specificity and sensitivity in distinguishing PCOS. Among these metabolites, L-arginine showed a negative correlation with the 2PN fertilization rate and cleavage rate, while estrone sulfate showed a negative correlation with the high-quality embryo rate in the in-vitro fertilization (IVF) cycle.CONCLUSIONS: We have conducted a preliminary study of a novel metabolic signature in women with PCOS using a multi-omics approach. The alterations in key metabolic pathways may enhance our understanding of the pathogenesis of PCOS.PMID:39464191 | PMC:PMC11502346 | DOI:10.3389/fendo.2024.1426517

The Hexosamine Biosynthetic Pathway alters the cytoskeleton to modulate cell proliferation and migration in metastatic prostate cancer

Mon, 28/10/2024 - 11:00
bioRxiv [Preprint]. 2024 Oct 14:2024.10.14.618283. doi: 10.1101/2024.10.14.618283.ABSTRACTCastration-resistant prostate cancer (CRPC) progresses despite androgen deprivation therapy, as cancer cells adapt to grow without testosterone, becoming more aggressive and prone to metastasis. CRPC biology complicates the development of effective therapies, posing challenges for patient care. Recent gene-expression and metabolomics studies highlight the Hexosamine Biosynthetic Pathway (HBP) as a critical player, with key components like GNPNAT1 and UAP1 being downregulated in metastatic CRPC. GNPNAT1 knockdown has been shown to increase cell proliferation and metastasis in CRPC cell lines, though the mechanisms remain unclear. To investigate the cellular basis of these CRPC phenotypes, we generated a CRISPR-Cas9 knockout model of GNPNAT1 in 22Rv1 CRPC cells, analyzing its impact on metabolomic, glycoproteomic, and transcriptomic profiles of cells. We hypothesize that HBP inhibition disrupts the cytoskeleton, altering mitotic progression and promoting uncontrolled growth. GNPNAT1 KO cells showed reduced levels of cytoskeletal filaments, such as actin and microtubules, leading to cell structure disorganization and chromosomal mis-segregation. GNPNAT1 inhibition also activated PI3K/AKT signaling, promoting proliferation, and impaired cell adhesion by mislocalizing EphB6, enhancing migration via the RhoA pathway and promoting epithelial-to-mesenchymal transition. These findings suggest that HBP plays a critical role in regulating CRPC cell behavior, and targeting this pathway could provide a novel therapeutic approach.PMID:39464080 | PMC:PMC11507681 | DOI:10.1101/2024.10.14.618283

Gut bacteria-derived succinate induces enteric nervous system regeneration

Mon, 28/10/2024 - 11:00
bioRxiv [Preprint]. 2024 Oct 18:2024.10.15.618589. doi: 10.1101/2024.10.15.618589.ABSTRACTEnteric neurons control gut physiology by regulating peristalsis, nutrient absorption, and secretion 1 . Disruptions in microbial communities caused by antibiotics or enteric infections result in the loss of enteric neurons and long-term motility disorders 2-5 . However, the signals and underlying mechanisms of this microbiota-neuron communication are unknown. We studied the effects of microbiota on the recovery of the enteric nervous system after microbial dysbiosis caused by antibiotics. We found that both enteric neurons and glia are lost after antibiotic exposure, but recover when the pre-treatment microbiota is restored. Using murine gnotobiotic models and fecal metabolomics, we identified neurogenic bacterial species and their derived metabolite succinate as sufficient to rescue enteric neurons and glia. Unbiased single-nuclei RNA-seq analysis uncovered a novel neural precursor-like population marked by the expression of the neuronal gene Nav2. Genetic fate-mapping showed that Plp1+ enteric glia differentiate into neurons following antibiotic exposure. In contrast, Nav2+ neurons expand upon succinate treatment and indicate an alternative mode of neuronal regeneration under recovery conditions. Our findings highlight specific microbial species, metabolites, and the underlying cellular mechanisms involved in neuronal regeneration, with potential therapeutic implications for peripheral neuropathies.PMID:39463929 | PMC:PMC11507891 | DOI:10.1101/2024.10.15.618589

Pages