PubMed
Evolutionary loss of an antibiotic efflux pump increases Pseudomonas aeruginosa quorum sensing mediated virulence in vivo
Res Sq [Preprint]. 2024 Nov 12:rs.3.rs-5391023. doi: 10.21203/rs.3.rs-5391023/v1.ABSTRACTAntibiotic resistance is one of the most pressing threats to human health, yet recent work highlights how loss of resistance may also drive pathogenesis in some bacteria. In two recent studies, we found that β-lactam antibiotic and nutrient stresses faced during infection selected for the genetic inactivation of the Pseudomonas aeruginosa (Pa) antibiotic efflux pump mexEFoprN. Unexpectedly, efflux pump mutations increased Pa virulence during infection; however, neither the prevalence of efflux pump inactivating mutations in real human infections, nor the mechanisms driving increased virulence of efflux pump mutants are known. We hypothesized that human infection would select for efflux pump mutations that drive increased virulence in Pa clinical isolates. Using genome sequencing of hundreds of Pa clinical isolates, we show that mexEFoprN efflux pump inactivating mutations are enriched in Pa cystic fibrosis isolates relative to Pa intensive care unit clinical isolates. Combining RNA-seq, metabolomics, genetic approaches, and infection models we show that efflux pump mutants have elevated expression of two key Pa virulence factors, elastase and rhamnolipids, which increased Pa virulence and lung damage during both acute and chronic infections. Increased virulence factor production was driven by higher Pseudomonas quinolone signal levels in the efflux pump mutants. Finally, genetic restoration of the efflux pump in a representative ICU clinical isolate and the notorious CF Pa Liverpool epidemic strain reduced their virulence. Together, our findings suggest that mutations inactivating antibiotic resistance mechanisms could lead to greater patient mortality and morbidity.PMID:39606469 | PMC:PMC11601840 | DOI:10.21203/rs.3.rs-5391023/v1
Quality assurance and quality control processes: Summary of a metabolomics community questionnaire
Metabolomics. 2017 May;13(5):50. doi: 10.1007/s11306-017-1188-9. Epub 2017 Mar 6.ABSTRACTINTRODUCTION: The Metabolomics Society Data Quality Task Group (DQTG) developed a questionnaire regarding quality assurance (QA) and quality control (QC) to provide baseline information about current QA and QC practices applied in the international metabolomics community.OBJECTIVES: The DQTG has a long-term goal of promoting robust QA and QC in the metabolomics community through increased awareness via communication, outreach and education, and through the promotion of best working practices. An assessment of current QA and QC practices will serve as a foundation for future activities and development of appropriate guidelines.METHOD: QA was defined as the set of procedures that are performed in advance of analysis of samples and that are used to improve data quality. QC was defined as the set of activities that a laboratory does during or immediately after analysis that are applied to demonstrate the quality of project data. A questionnaire was developed that included 70 questions covering demographic information, QA approaches and QC approaches and allowed all respondents to answer a subset or all of the questions.RESULT: The DQTG questionnaire received 97 individual responses from 84 institutions in all fields of metabolomics covering NMR, LC-MS, GC-MS, and other analytical technologies.CONCLUSION: There was a vast range of responses concerning the use of QA and QC approaches that indicated the limited availability of suitable training, lack of Standard Operating Procedures (SOPs) to review and make decisions on quality, and limited use of standard reference materials (SRMs) as QC materials. The DQTG QA/QC questionnaire has for the first time demonstrated that QA and QC usage is not uniform across metabolomics laboratories. Here we present recommendations on how to address the issues concerning QA and QC measurements and reporting in metabolomics.PMID:39606286 | PMC:PMC11601953 | DOI:10.1007/s11306-017-1188-9
Metabolomics combined with network pharmacology reveals anti-asthmatic effects of Nepeta bracteata on allergic asthma rats
Chin Herb Med. 2024 Mar 26;16(4):599-611. doi: 10.1016/j.chmed.2024.02.001. eCollection 2024 Oct.ABSTRACTOBJECTIVE: To investigate the mechanisms that underlie the anti-asthmatic effects of Nepeta bracteata (DBJJ, Dabao Jingjie in Chinese) in rats by integrating metabolomics and network pharmacology.METHODS: In this study, the rat model of asthma was induced by ovalbumin (OVA), and the rats were treated with a decoction of N. bracteata. Pathological changes in lung tissue were observed, and the quantification of eosinophils (EOS) and white blood cells (WBC) in bronchoalveolar lavage fluid was performed. Furthermore, the serum levels of asthma-related factors induced by OVA were assessed. 1H NMR spectroscopy serum metabolomics method was utilized to identify differential metabolites and their associated metabolic pathways. UPLC-QE-MS/MS combined with network pharmacology was employed to predict the core targets and pathways of DBJJ in its action against asthma. The anti-asthmatic properties of DBJJ were investigated using an integrated approach of metabolomics and network pharmacology. The findings were validated through molecular docking and Western blotting analysis of the key targets.RESULTS: The administration of DBJJ effectively alleviated OVA-induced lung histopathological changes and decreased the number of EOS and WBC in BALF. Additionally, DBJJ inhibited the OVA-induced elevation of TNF-α, IL-18, Ig-E, EOS, IL-1β, MDA, VEGF-A, and TGF-β1. A total of 21 biomarkers and 10 pathways were found by metabolomics analysis. A total of 29 compounds were identified by UPLC-QE-MS/MS, in which 13 active components were screened by oral availability and Caco-2 cell permeability, the 120 targets and 173 KEGG pathways were predicted. The integration of metabolomics and network pharmacological analysis revealed that DBJJ's main constituents, including ferulic acid and ursolic acid, exerted their effects on four targets, namely DAO and NOS2, as well as their associated metabolites and pathways. The active constituents of DBJJ demonstrated a high binding affinity towards DAO and NOS2. Furthermore, DBJJ was observed to decrease the protein expression and phosphorylation levels of NOS2, MAPK, and STAT3.CONCLUSION: The administration of DBJJ demonstrates notable anti-asthma properties in rats with allergic asthma. This effect can be attributed to the modulation of various targets, including NOS2, MAPK, and STAT3, by primary constituents such as ferulic acid and ursolic acid.PMID:39606263 | PMC:PMC11589474 | DOI:10.1016/j.chmed.2024.02.001
Network pharmacology, molecular docking, and untargeted metabolomics reveal molecular mechanisms of multi-targets effects of Qingfei Tongluo Plaster improving respiratory syncytial virus pneumonia
Chin Herb Med. 2024 Jul 29;16(4):638-655. doi: 10.1016/j.chmed.2024.07.007. eCollection 2024 Oct.ABSTRACTOBJECTIVE: Qingfei Tongluo Plaster (QFP), an improved Chinese medicine hospital preparation, is an attractive treatment option due to its well clinical efficacy, convenience, economy, and patient compliance in the treatment of respiratory syncytial virus (RSV) pneumonia. The aim of this study was to investigate the efficacy mechanism of QFP on RSV rats from the perspective of alleviating lung inflammation and further explore the changes of serum metabolites and metabolic pathways in RSV rats under the influence of QFP.METHODS: This study used network pharmacological methods and molecular docking combined with molecular biology and metabolomics from multi-dimensional perspectives to screen and verify the therapeutic targets. Open online databases were used to speculate the gene targets of efficient ingredients and diseases. Then, we used the String database to examine the fundamental interaction of common targets of drugs and diseases. An online enrichment analysis was performed to predict the functional pathways. Molecular docking was applied to discover the binding modes between essential ingredients and crucial gene targets. Finally, we demonstrated the anti-inflammatory ability of QFP in the RSV-evoked pneumonia rat model and explained the mechanism in combination with the metabolomics results.RESULTS: There were 19 critical targets defined as the core targets: tumor necrosis factor (TNF), inducible nitric oxide synthase 2 (NOS2), mitogen-activated protein kinase 14 (MAPK14), g1/S-specific cyclin-D1 (CCND1), signal transducer and activator of transcription 1-alpha/beta (STAT1), proto-oncogene tyrosine-protein kinase Src (SRC), cellular tumor antigen p53 (TP53), interleukin-6 (IL6), hypoxia-inducible factor 1-alpha (HIF1A), RAC-alpha serine/threonine-protein kinase (AKT1), signal transducer and activator of transcription 3 (STAT3), heat shock protein HSP 90-alpha (HSP90AA1), tyrosine-protein kinase JAK2 (JAK2), cyclin-dependent kinase inhibitor 1 (CDKN1A), mitogen-activated protein kinase 3 (MAPK3), epidermal growth factor receptor (EGFR), myc proto-oncogene protein (MYC), protein c-Fos (FOS) and transcription factor p65 (RELA). QFP treated RSV pneumonia mainly through the phosphatidylinositol 3-kinase (PI3K)/RAC AKT pathway, HIF-1 pathway, IL-17 pathway, TNF pathway, and MAPK pathway. Animal experiments proved that QFP could effectively ameliorate RSV-induced pulmonary inflammation. A total of 28 metabolites underwent significant changes in the QFP treatment, and there are four metabolic pathways consistent with the KEGG pathway analyzed by network pharmacology, suggesting that they may be critical processes related to treatment.CONCLUSION: These results provide essential perspicacity into the mechanisms of action of QFP as a promising anti-RSV drug.PMID:39606255 | PMC:PMC11589485 | DOI:10.1016/j.chmed.2024.07.007
Phytochemistry, quality control and biosynthesis in ginseng research from 2021 to 2023: A state-of-the-art review concerning advances and challenges
Chin Herb Med. 2024 Aug 22;16(4):505-520. doi: 10.1016/j.chmed.2024.08.002. eCollection 2024 Oct.ABSTRACTPanax L. (Araliaceae) has a long history of medicinal and edible use due to its significant tonifying effects, and ginseng research has been a hot topic in natural products research and food science. In continuation of our recent ginseng review, we highlighted the advances in ginseng research from 2021 to 2023 with 157 citations, which exhibited the increasingly systematic, collaborative, and intelligent characteristics. In this review, we firstly updated the progress in phytochemistry involving the ginsenosides and polysaccharides and summarized the researches on the active components. Then, some specific applications by feat of the multidimensional chromatography, mass spectrometry imaging, DNA barcoding, and metabolomics, were analyzed, which could provide rich information supporting the multi-component characterization, authentication, and quality control of ginseng and the versatile products. Finally, the recent biosynthesis studies concerning ginsenosides were retrospected. Additionally, the current challenges and future trends with respect to ginseng research were discussed.PMID:39606254 | PMC:PMC11589329 | DOI:10.1016/j.chmed.2024.08.002
Piezoelectric Stimulation Induces Osteogenesis in Mesenchymal Stem Cells Cultured on Electroactive Two-Dimensional Substrates
ACS Appl Polym Mater. 2024 Nov 6;6(22):13710-13722. doi: 10.1021/acsapm.4c02485. eCollection 2024 Nov 22.ABSTRACTPhysical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric stimulation as a potential osteogenic cue mimicking the electroactive properties of bone's extracellular matrix. When combined with a magnetostrictive component, piezoelectric polymers can be used for MSC stimulation by applying an external magnetic field. The deformation of the magnetostrictive component produces a deformation in the polymer matrix, generating a change in the surface charge that induces an electric field that can be transmitted to the cells. Cell adhesion, cytoskeleton changes, and metabolomics are the first evidence of MSC osteoblastogenesis and can be used to study initial MSC response to this kind of stimulation. In the current study, poly(vinylidene) fluoride (PVDF) piezoelectric films with and without cobalt ferrite oxide (CFO) crystallized from the melt in the presence of the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim][Cl]) were produced. [Bmim][Cl] allowed the production of the β-phase, the most electroactive phase, even without CFO. After ionic liquid removal, PVDF and PVDF-CFO films presented high percentages of the β-phase and similar crystalline content. Incorporating CFO nanoparticles was effective, allowing the electromechanical stimulation of MSCs by applying a magnetic field with a bioreactor. Before stimulation, the initial response of MSCs was characterized in static conditions, showing that the produced films were biocompatible and noncytotoxic, allowing MSC adhesion and proliferation in the short term. Stimulation experiments revealed that MSCs electromechanically stimulated for 3 days in PVDF-CFO supports showed longer focal adhesions and decreased vimentin cytoskeletal density, both signals of early osteogenic differentiation. Furthermore, they rearranged their energy metabolism toward an osteogenic phenotype after 7 days of culture under the same stimulation. The results prove that MSCs respond to electromechanical stimulation by osteogenic differentiation.PMID:39606252 | PMC:PMC11590054 | DOI:10.1021/acsapm.4c02485
Supplementation with Chinese herbal preparations protect the gut-liver axis of Hu sheep, promotes gut-liver circulation, regulates intestinal flora and immunity
Front Immunol. 2024 Nov 13;15:1454334. doi: 10.3389/fimmu.2024.1454334. eCollection 2024.ABSTRACTThe gut-liver axis in ruminants can explain nutrient regulation, the gut-liver cycle, and immune function in ruminant biology through the gut microbe-gut metabolite-liver metabolite relationship. to investigate the effects of herbal feed additives on the gut-liver axis of Hu sheep. In this study, a broadly targeted UPLC-MS/MS metabolomics approach and 16s sequencing of gut microorganisms were used to detect, identify and quantify changes in ileal microorganisms, liver metabolites and ileal metabolites following the addition of Chinese herbal preparations. The addition of a 0.5% herbal feed additive increased ileal IgA, IgG and complement C3 levels. The addition of Chinese herbal preparations can increase the abundance of Firmicutes, Actinobacteriota, Bacteroidota, at the portal level of the ileum, increase the metabolism of organic matter and its derivatives, bile acids, amino acids and their metabolites, coenzymes, and vitamins in the liver and ileum, enhance nutrient absorption and waste metabolism, accelerate liver metabolism, promote gut-liver circulation, and improve ileal and liver immunity. This study provides a theoretical basis for understanding the effects of herbal feed additives on the gut-liver axis in ruminants.PMID:39606237 | PMC:PMC11599181 | DOI:10.3389/fimmu.2024.1454334
Integration of metabolomics and transcriptomics to reveal anti-immunosuppression mechanism of Lycium barbarum polysaccharide
Front Pharmacol. 2024 Nov 13;15:1486739. doi: 10.3389/fphar.2024.1486739. eCollection 2024.ABSTRACTIt is well documented that immunosuppression in chickens increases the risk of secondary infections and immunodeficiencies, resulting in significant financial setbacks for the poultry sector. It is crucial to determine if Lycium barbarum polysaccharide (LBP) can counteract immune suppression in young chickens, considering its known ability to modulate immune responses. The aim of this study was to investigate the antagonistic effect and mechanism of LBP on immunosuppression in chicks. A total of 200 seven-day-old Hyland Brown laying hens were used to develop an immunosuppression model and to investigate the optimal time of use and optimal dosage of LBP. A further 120 seven-day-old Hyland Brown laying hens were used to investigate the mechanism of antagonism of LBP against immunosuppression at the optimal time and dosage. The results demonstrated that LBP significantly elevated body weight, spleen index, and peripheral lymphocyte transformation rate, and ameliorated pathological spleen damage in immunosuppressed chickens. A total of 178 differential genes were significantly upregulated following LBP intervention, with a significant enrichment in immune-related pathways, including the chemokine signalling pathway, the C-type lectin receptor signalling pathway, the B-cell receptor signalling pathway, platelet activation, natural killer cell-mediated cytotoxicity, and Th1 and Th2 cell differentiation. A total of 20 different metabolites were identified by metabolomics, which were mainly involved in vitamin metabolism, lipid metabolism, nucleic acid metabolism and amino acid metabolism. The integrated examination of transcriptomic and metabolomic data revealed that the glycerophospholipid metabolic pathway stands out as the most significant among all metabolic pathways. The results demonstrated that LBP regulate the immune system in a multi-pathway and multi-target way.PMID:39605922 | PMC:PMC11599638 | DOI:10.3389/fphar.2024.1486739
Herbal formula xuling-jiangu improves bone metabolic balance in rats with ovariectomy-induced osteoporosis via the gut-bone axis
Front Pharmacol. 2024 Nov 13;15:1505231. doi: 10.3389/fphar.2024.1505231. eCollection 2024.ABSTRACTINTRODUCTION: The XuLing JianGu recipe (XLJGR) is an empirical traditional Chinese medicine formula used for the treatment of osteoporosis. This study aims to explore the effects of XLJGR on the intestinal microbiota composition and endogenous metabolites in ovariectomized (OVX) rats.METHODS: An OVX rat model was established to evaluate the intervention effects of XLJGR. The measured indicators included bone density, serum bone metabolism markers, and an analysis of the types and abundances of intestinal microbiota, along with changes in endogenous metabolites. Additionally, MC3T3-E1 cells were used to validate the differential metabolites.RESULTS: XLJGR significantly reduced the abundance of Bacteroides, Butyricicoccus, and other bacterial strains in the gut. KEGG metabolic pathway enrichment analysis showed that XLJGR intervention led to notable changes in pathways such as peptidoglycan biosynthesis, carbapenem biosynthesis, and vancomycin resistance. Moreover, XLJGR significantly upregulated key intestinal microbiota metabolites, including gabapentin(GAB), camphoric acid(CAA), and nonanedioic acid(AZA), thereby promoting the proliferation and osteogenic differentiation of MC3T3-E1 cells.DISCUSSION: This study highlights the potential biomedical applications of XLJGR in promoting bone health by positively affecting intestinal microbiota and metabolic characteristics. These findings suggest that XLJGR may serve as a viable alternative in the treatment of osteoporosis, warranting further exploration of its therapeutic mechanisms and clinical applications.PMID:39605913 | PMC:PMC11598424 | DOI:10.3389/fphar.2024.1505231
Effects of 5-ion 6-beam sequential irradiation in the presence and absence of hindlimb or control hindlimb unloading on behavioral performances and plasma metabolic pathways of Fischer 344 rats
Front Physiol. 2024 Nov 13;15:1486767. doi: 10.3389/fphys.2024.1486767. eCollection 2024.ABSTRACTINTRODUCTION: Effects and interactions between different spaceflight stressors are expected to be experienced by crew on missions when exposed to microgravity and galactic cosmic rays (GCRs). One of the limitations of previous studies on simulated weightlessness using hindlimb unloading (HU) is that a control HU condition was not included.METHODS: We characterized the behavioral performance of male Fischer rats 2 months after sham or total body irradiation with a simplified 5-ion 6-mixed-beam exposure representative of GCRs in the absence or presence of HU. Six months later, the plasma, hippocampus, and cortex were processed to determine whether the behavioral effects were associated with long-term alterations in the metabolic pathways.RESULTS: In the open field without and with objects, interactions were observed for radiation × HU. In the plasma of animals that were not under the HU or control HU condition, the riboflavin metabolic pathway was affected most for sham irradiation vs. 0.75 Gy exposure. Analysis of the effects of control HU on plasma in the sham-irradiated animals showed that the alanine, aspartate, glutamate, riboflavin, and glutamine metabolisms as well as arginine biosynthesis were affected. The effects of control HU on the hippocampus in the sham-irradiated animals showed that the phenylalanine, tyrosine, and tryptophan pathway was affected the most. Analysis of effects of 0.75 Gy irradiation on the cortex of control HU animals showed that the glutamine and glutamate metabolic pathway was affected similar to the hippocampus, while the riboflavin pathway was affected in animals that were not under the control HU condition. The effects of control HU on the cortex in sham-irradiated animals showed that the riboflavin metabolic pathway was affected. Animals receiving 0.75 Gy of irradiation showed impaired glutamine and glutamate metabolic pathway, whereas animals receiving 1.5 Gy of irradiation showed impaired riboflavin metabolic pathways. A total of 21 plasma metabolites were correlated with the behavioral measures, indicating that plasma and brain biomarkers associated with behavioral performance are dependent on the environmental conditions experienced.DISCUSSION: Phenylalanine, tyrosine, and tryptophan metabolism as well as phenylalanine and tryptophan as plasma metabolites are biomarkers that can be considered for spaceflight as they were revealed in both Fischer and WAG/Rij rats exposed to simGCRsim and/or HU.PMID:39605860 | PMC:PMC11598337 | DOI:10.3389/fphys.2024.1486767
Language model-guided anticipation and discovery of unknown metabolites
bioRxiv [Preprint]. 2024 Nov 15:2024.11.13.623458. doi: 10.1101/2024.11.13.623458.ABSTRACTDespite decades of study, large parts of the mammalian metabolome remain unexplored. Mass spectrometry-based metabolomics routinely detects thousands of small molecule-associated peaks within human tissues and biofluids, but typically only a small fraction of these can be identified, and structure elucidation of novel metabolites remains a low-throughput endeavor. Biochemical large language models have transformed the interpretation of DNA, RNA, and protein sequences, but have not yet had a comparable impact on understanding small molecule metabolism. Here, we present an approach that leverages chemical language models to discover previously uncharacterized metabolites. We introduce DeepMet, a chemical language model that learns the latent biosynthetic logic embedded within the structures of known metabolites and exploits this understanding to anticipate the existence of as-of-yet undiscovered metabolites. Prospective chemical synthesis of metabolites predicted to exist by DeepMet directs their targeted discovery. Integrating DeepMet with tandem mass spectrometry (MS/MS) data enables automated metabolite discovery within complex tissues. We harness DeepMet to discover several dozen structurally diverse mammalian metabolites. Our work demonstrates the potential for language models to accelerate the mapping of the metabolome.PMID:39605668 | PMC:PMC11601323 | DOI:10.1101/2024.11.13.623458
<em>iModMix</em> : Integrative Module Analysis for Multi-omics Data
bioRxiv [Preprint]. 2024 Nov 15:2024.11.12.623208. doi: 10.1101/2024.11.12.623208.ABSTRACTSUMMARY: The integration of metabolomics with other omics ("multi-omics") offers complementary insights into disease biology. However, this integration remains challenging due to the fragmented landscape of current methodologies, which often require programming experience or bioinformatics expertise. Moreover, existing approaches are limited in their ability to accommodate unidentified metabolites, resulting in the exclusion of a significant portion of data from untargeted metabolomics experiments. Here, we introduce iModMix , a novel approach that uses a graphical lasso to construct network modules for integration and analysis of multi-omics data. iModMix uses a horizontal integration strategy, allowing metabolomics data to be analyzed alongside proteomics or transcriptomics to explore complex molecular associations within biological systems. Importantly, it can incorporate both annotated and unidentified metabolites, addressing a key limitation of existing methodologies. iModMix is available as a user-friendly R Shiny application that requires no programming experience ( https://imodmix.moffitt.org ), and it includes example data from several publicly available multi-omic studies for exploration. An R package is available for advanced users ( https://github.com/biodatalab/iModMix ).AVAILABILITY AND IMPLEMENTATION: Shiny application: https://imodmix.moffitt.org . The R package and source code: https://github.com/biodatalab/iModMix .PMID:39605665 | PMC:PMC11601443 | DOI:10.1101/2024.11.12.623208
<em>Comamonas aquatica</em> inhibits TIR-1/SARM1 induced axon degeneration
bioRxiv [Preprint]. 2024 Nov 21:2024.11.20.622298. doi: 10.1101/2024.11.20.622298.ABSTRACTEmerging evidence suggests the microbiome critically influences the onset and progression of neurodegenerative diseases; however, the identity of neuroprotective bacteria and the molecular mechanisms that respond within the host remain largely unknown. We took advantage of Caenorhabditis elegans' well characterized nervous system and ability to eat uni-bacterial diets to determine how metabolites and neuroprotective molecules from single species of bacteria suppress degeneration of motor neurons. We found Comamonas aquatica significantly protects against degeneration induced by overexpressing a key regulator of axon degeneration, TIR-1/SARM1. Genetic analyses and metabolomics reveal Comamonas protects against neurodegeneration by providing sufficient Vitamin B12 to activate METR-1/MTR methionine synthase in the intestine, which then lowers toxic levels of homocysteine in TIR-1-expressing animals. Defining a molecular pathway between Comamonas and neurodegeneration adds significantly to our understanding of gut-brain interactions and, given the prominent role of homocysteine in neurodegenerative disorders, reveals how such a bacterium could protect against disease.PMID:39605655 | PMC:PMC11601612 | DOI:10.1101/2024.11.20.622298
Gut Microbiota and Derived Metabolites Mediate Obstructive Sleep Apnea Induced Atherosclerosis
bioRxiv [Preprint]. 2024 Nov 19:2024.11.18.624205. doi: 10.1101/2024.11.18.624205.ABSTRACTBACKGROUND: Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia/hypercapnia (IHC), affects predominantly obese individuals, and increases atherosclerosis risk. Since we and others have implicated gut microbiota and metabolites in atherogenesis, we dissected their contributions to OSA-induced atherosclerosis.RESULTS: Atherosclerotic lesions were compared between conventionally-reared specific pathogen free (SPF) and germ-free (GF) ApoE -/- mice following a high fat high cholesterol diet (HFHC), with and without IHC conditions. The fecal microbiota and metabolome were profiled using 16S rRNA gene amplicon sequencing and untargeted tandem mass spectrometry (LC-MS/MS) respectively. Phenotypic data showed that HFHC significantly increased atherosclerosis as compared to regular chow (RC) in both aorta and pulmonary artery (PA) of SPF mice. IHC exacerbated lesions in addition to HFHC. Differential abundance analysis of gut microbiota identified an enrichment of Akkermansiaceae and a depletion of Muribaculaceae (formerly S24-7) family members in the HFHC-IHC group. LC-MS/MS showed a dysregulation of bile acid profiles with taurocholic acid, taurodeoxycholic acid, and 12-ketodeoxycholic acid enriched in the HFHC-IHC group, long-chain N-acyl amides, and phosphatidylcholines. Interestingly, GF ApoE -/- mice markedly reduced atherosclerotic formation relative to SPF ApoE -/- mice in the aorta under HFHC/IHC conditions. In contrast, microbial colonization did not show a significant impact on the atherosclerotic progression in PA.CONCLUSIONS: In summary, this research demonstrated that (1) IHC acts cooperatively with HFHC to induce atherosclerosis; (2) gut microbiota modulate atherogenesis, induced by HFHC/IHC, in the aorta not in PA; (3) different analytical methods suggest that a specific imbalance between Akkermansiaceae and Muribaculaceae bacterial families mediate OSA-induced atherosclerosis; and (4) derived bile acids, such as deoxycholic acid and lithocholic acid, regulate atherosclerosis in OSA. The knowledge obtained provides novel insights into the potential therapeutic approaches to prevent and treat OSA-induced atherosclerosis.PMID:39605650 | PMC:PMC11601605 | DOI:10.1101/2024.11.18.624205
Appearance of green tea compounds in plasma following acute green tea consumption is modulated by the gut microbiome in mice
bioRxiv [Preprint]. 2024 Nov 13:2024.07.11.603097. doi: 10.1101/2024.07.11.603097.ABSTRACTStudies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to differential metabolism of phytochemicals resulting from variation in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea. A total of 20 LCM mice received 10 distinct human fecal slurries for an n=2 mice per human gut microbiome; 9 LCM mice remained un-colonized with human slurries throughout the experiment. We performed untargeted metabolomics on green tea and plasma to identify green tea compounds that were found in plasma of LCM and HU mice that had consumed green tea. 16S ribosomal RNA gene sequencing was performed on feces of all mice at study end to assess microbiome composition. We found multiple green tea compounds in plasma associated with microbiome presence and diversity (including acetylagmatine, lactiflorin, and aspartic acid negatively associated with diversity). Additionally, we detected strong associations between bioactive green tea compounds in plasma and specific gut bacteria, including associations between spiramycin and Gemmiger , and between wildforlide and Anaerorhabdus . Additionally, some of the physiologically relevant green tea compounds are likely derived from plant-associated microbes, highlighting the importance of considering foods and food products as meta-organisms. Overall, we describe a novel workflow for discovering relationships between individual food compounds and composition of the gut microbiome.IMPORTANCE: Foods contain thousands of unique and biologically important compounds beyond the macro- and micro-nutrients listed on nutrition facts labels. In mammals, many of these compounds are metabolized by the community of microbes in the colon. These microbes may impact the thousands of biologically important compounds we consume; therefore, understanding microbial metabolism of food compounds will be important for understanding how foods impact health. We used metabolomics to track green tea compounds in plasma of mice with and without complex microbiomes. From this, we can start to recognize certain groups of green tea-derived compounds that are impacted by mammalian microbiomes. This research presents a novel technique for understanding microbial metabolism of food-derived compounds in the gut, which can be applied to other foods.PMID:39605610 | PMC:PMC11601224 | DOI:10.1101/2024.07.11.603097
Resource landscape shapes the composition and stability of the human vaginal microbiota
bioRxiv [Preprint]. 2024 Nov 13:2024.11.12.622464. doi: 10.1101/2024.11.12.622464.ABSTRACTThe vaginal microbiota has demonstrated associations with women's and newborns' health. Despite its comparatively simple composition relative to other human microbiota systems, the ecological processes that underpin the dynamics and stability of vaginal microbial communities remain mechanistically elusive. A crucial, yet so far under-explored, aspect of vaginal microbiota ecology is the role played by nutritional resources. Glycogen and its derivatives, produced by vaginal epithelia, are accessible to all bacterial constituents of the microbiota. Concurrently, free sialic acid and fucose offer supplementary nutritional resources for bacterial strains capable of cleaving them from glycans, which are structurally integral to mucus. Notably, bacteria adept at sialic acid exploitation are often correlated with adverse clinical outcomes and are frequently implicated in bacterial vaginosis (BV). In this study, we introduce a novel mathematical model tailored to human vaginal microbiota dynamics to explore the interactions between bacteria and their respective nutritional landscapes. Our resource-based model examines the impact of the relative availability of glycogen derivatives (accessible to all bacterial species) and sialic acid (exclusive to some BV-associated bacteria) on the composition of the vaginal microbiota. Our findings elucidate that the prevalence of BV-associated bacteria is intricately linked to their exclusive access to specific nutritional resources. This private access fortifies communities dominated by BV-associated bacteria, rendering them resilient to compositional transitions. We provide empirical support for our model's predictions from longitudinal microbiota composition and metabolomic data, collected from a North American cohort. The insights gleaned from this study shed light on potential pathways for BV prevention.PMID:39605590 | PMC:PMC11601336 | DOI:10.1101/2024.11.12.622464
Metabolomic Analysis of Murine Tissues Infected with Brucella melitensis
bioRxiv [Preprint]. 2024 Nov 16:2024.11.16.623915. doi: 10.1101/2024.11.16.623915.ABSTRACTBrucella is a gram negative, facultative, intracellular bacterial pathogen that constitutes a substantial threat to human and animal health. Brucella can replicate in a variety of tissues and can induce immune responses that alter host metabolite availability. Here, mice were infected with B. melitensis and murine spleens, livers, and female reproductive tracts were analyzed by GC-MS to determine tissue-specific metabolic changes at one-, two- and four-weeks post infection. The most remarkable changes were observed at two-weeks post-infection when relative to uninfected tissues, 42 of 329 detected metabolites in reproductive tracts were significantly altered by Brucella infection, while in spleens and livers, 68/205 and 139/330 metabolites were significantly changed, respectively. Several of the altered metabolites in host tissues were linked to the GABA shunt and glutaminolysis. Treatment of macrophages with GABA did not alter control of B. melitensis infection, and deletion of the putative GABA transporter BMEI0265 did not alter B. melitensis virulence. While glutaminolysis inhibition did not affect control of B. melitensis in macrophages, glutaminolysis was required for macrophage IL-1β production in response to B. melitensis . In sum, these results indicate that Brucella infection alters host tissue metabolism and that these changes could have effects on inflammation and the outcome of infection.PMID:39605528 | PMC:PMC11601316 | DOI:10.1101/2024.11.16.623915
Sugar phosphate-mediated inhibition of peptidoglycan precursor synthesis
bioRxiv [Preprint]. 2024 Nov 14:2024.11.13.623475. doi: 10.1101/2024.11.13.623475.ABSTRACTAntibiotic tolerance, the widespread ability of diverse pathogenic bacteria to sustain viability in the presence of typically bactericidal antibiotics for extended time periods, is an understudied steppingstone towards antibiotic resistance. The Gram-negative pathogen Vibrio cholerae , the causative agent of cholera, is highly tolerant to β-lactam antibiotics. We previously found that the disruption of glycolysis, via deletion of pgi ( vc0374 , glucose-6-phosphate isomerase), resulted in significant cell wall damage and increased sensitivity towards β-lactam antibiotics. Here, we uncover the mechanism of this resulting damage. We find that glucose causes growth inhibition, partial lysis, and a damaged cell envelope in Δ pgi . Supplementation with N-acetylglucosamine, but not other carbon sources (either from upper glycolysis, TCA cycle intermediates, or cell wall precursors) restored growth, re-established antibiotic resistance towards β-lactams, and recovered cellular morphology of a pgi mutant exposed to glucose. Targeted metabolomics revealed the cell wall precursor synthetase enzyme GlmU ( vc2762 , coding for the bifunctional enzyme that converts glucosamine-1P to UDP-GlcNAc) as a critical bottleneck and mediator of glucose toxicity in Δ pgi . In vitro assays of GlmU revealed that sugar phosphates (primarily glucose-1-phosphate) inhibit the acetyltransferase activity of GlmU (likely competitively), resulting in compromised PG and LPS biosynthesis. These findings identify GlmU as a critical branchpoint enzyme between central metabolism and cell envelope integrity and reveal the molecular mechanism of Δ pgi glucose toxicity in Vibrio cholerae .IMPORTANCE: Sugar-phosphate toxicity is a well characterized phenomenon that is seen within diverse bacterial species, and yet the molecular underpinnings remain elusive. We previously discovered that disrupting Vibrio cholerae's ability to eat glucose (by disrupting the pgi gene), also resulted in a damaged cell envelope. Upon deletion of pgi , glucose-phosphate levels rapidly build and inhibit the enzymatic activity of GlmU, a key step of bacterial peptidoglycan precursor synthesis. GlmU inhibition causes enhanced killing by antibiotics and a pronounced cell envelope defect. Thus, GlmU serves as a prime target for novel drug development. This research opens new routes through which central metabolism and sugar-phosphate toxicity modulate antibiotic susceptibility.PMID:39605520 | PMC:PMC11601392 | DOI:10.1101/2024.11.13.623475
Interlaboratory comparison of standardised metabolomics and lipidomics analyses in human and rodent blood using the MxP Quant 500 kit
bioRxiv [Preprint]. 2024 Nov 14:2024.11.13.619447. doi: 10.1101/2024.11.13.619447.ABSTRACTMetabolomics and lipidomics are pivotal in understanding phenotypic variations beyond genomics. However, quantification and comparability of mass spectrometry (MS)-derived data are challenging. Standardised assays can enhance data comparability, enabling applications in multi-center epidemiological and clinical studies. Here we evaluated the performance and reproducibility of the MxP® Quant 500 kit across 14 laboratories. The kit allows quantification of 634 different metabolites from 26 compound classes using triple quadrupole MS. Each laboratory analysed twelve samples, including human plasma and serum, lipaemic plasma, NIST SRM 1950, and mouse and rat plasma, in triplicates. 505 out of the 634 metabolites were measurable above the limit of detection in all laboratories, while eight metabolites were undetectable in our study. Out of the 505 metabolites, 412 were observed in both human and rodent samples. Overall, the kit exhibited high reproducibility with a median coefficient of variation (CV) of 14.3 %. CVs in NIST SRM 1950 reference plasma were below 25 % and 10 % for 494 and 138 metabolites, respectively. To facilitate further inspection of reproducibility for any compound, we provide detailed results from the in-depth evaluation of reproducibility across concentration ranges using Deming regression. Interlaboratory reproducibility was similar across sample types, with some species-, matrix-, and phenotype-specific differences due to variations in concentration ranges. Comparisons with previous studies on the performance of MS-based kits (including the AbsoluteIDQ p180 and the Lipidyzer) revealed good concordance of reproducibility results and measured absolute concentrations in NIST SRM 1950 for most metabolites, making the MxP® Quant 500 kit a relevant tool to apply metabolomics and lipidomics in multi-center studies.PMID:39605511 | PMC:PMC11601468 | DOI:10.1101/2024.11.13.619447
Chronic Viral Reactivation and Associated Host Immune Response and Clinical Outcomes in Acute COVID-19 and Post-Acute Sequelae of COVID-19
bioRxiv [Preprint]. 2024 Nov 16:2024.11.14.622799. doi: 10.1101/2024.11.14.622799.ABSTRACTChronic viral infections are ubiquitous in humans, with individuals harboring multiple latent viruses that can reactivate during acute illnesses. Recent studies have suggested that SARS- CoV-2 infection can lead to reactivation of latent viruses such as Epstein-Barr Virus (EBV) and cytomegalovirus (CMV), yet, the extent and impact of viral reactivation in COVID-19 and its effect on the host immune system remain incompletely understood. Here we present a comprehensive multi-omic analysis of viral reactivation of all known chronically infecting viruses in 1,154 hospitalized COVID-19 patients, from the Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study, who were followed prospectively for twelve months. We reveal significant reactivation of Herpesviridae , Enteroviridae , and Anelloviridae families during acute stage of COVID-19 (0-40 days post- hospitalization), each exhibiting distinct temporal dynamics. We also show that viral reactivation correlated with COVID-19 severity, demographic characteristics, and clinical outcomes, including mortality. Integration of cytokine profiling, cellular immunophenotyping, metabolomics, transcriptomics, and proteomics demonstrated virus-specific host responses, including elevated pro-inflammatory cytokines (e.g. IL-6, CXCL10, and TNF), increased activated CD4+ and CD8+ T-cells, and upregulation of cellular replication genes, independent of COVID-19 severity and SARS-CoV-2 viral load. Notably, persistent Anelloviridae reactivation during convalescence (≥3 months post-hospitalization) was associated with Post-Acute Sequelae of COVID-19 (PASC) symptoms, particularly physical function and fatigue. Our findings highlight a remarkable prevalence and potential impact of chronic viral reactivation on host responses and clinical outcomes during acute COVID-19 and long term PASC sequelae. Our data provide novel immune, transcriptomic, and metabolomic biomarkers of viral reactivation that may inform novel approaches to prognosticate, prevent, or treat acute COVID- 19 and PASC.PMID:39605478 | PMC:PMC11601417 | DOI:10.1101/2024.11.14.622799