PubMed
Metabolomic study for monitoring of biomarkers in mouse plasma with asthma by gas chromatography-mass spectrometry.
Metabolomic study for monitoring of biomarkers in mouse plasma with asthma by gas chromatography-mass spectrometry.
J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Aug 30;1063:156-162
Authors: Seo C, Hwang YH, Lee HS, Kim Y, Shin TH, Lee G, Son YJ, Kim H, Yee ST, Park AK, Paik MJ
Abstract
Asthma is a multifaceted chronic disease caused by an alteration of various genetic and environmental factors that is increasing in incidence worldwide. However, the biochemical mechanisms regarding asthma are not completely understood. Thus, we performed of metabolomic study for understanding of the biochemical events by monitoring of altered metabolism and biomarkers in asthma. In mice plasma, 27 amino acids(AAs), 24 fatty acids(FAs) and 17 organic acids(OAs) were determined by ethoxycarbonyl(EOC)/methoxime(MO)/tert-butyldimethylsilyl(TBDMS) derivatives with GC-MS. Their percentage composition normalized to the corresponding mean levels of control group. They then plotted as star symbol patterns for visual monitoring of altered metabolism, which were characteristic and readily distinguishable in control and asthma groups. The Mann-Whitney test revealed 25 metabolites, including eight AAs, nine FAs and eight OAs, which were significantly different (p<0.05), and orthogonal partial least-squares-discriminant analysis revealed a clear separation of the two groups. In classification analysis, palmitic acid and methionine were the main metabolites for discrimination between asthma and the control followed by pipecolic, lactic, α-ketoglutaric, and linoleic acids for high classification accuracy as potential biomarkers. These explain the metabolic disturbance in asthma for AAs and FAs including intermediate OAs related to the energy metabolism in the TCA cycle.
PMID: 28865332 [PubMed - as supplied by publisher]
Proteomics and (1)H NMR-based metabolomics analysis of pathogenic Vibrio vulnificus aquacultures isolated from sewage drains.
Related Articles
Proteomics and (1)H NMR-based metabolomics analysis of pathogenic Vibrio vulnificus aquacultures isolated from sewage drains.
Environ Sci Pollut Res Int. 2017 Sep 01;:
Authors: Zhang C, Wang Z, Zhang D, Zhou J, Lu C, Su X, Ding D
Abstract
Vibrio bacteria live in both marine and freshwater habitats and are associated with aquatic animals. Vibrio vulnificus is a pathogenic bacterium that infects people and livestock. It is usually found in offshore waters or within fish and shellfish. This study presents a comparative proteomic analysis of the outer membrane protein (OMP) changes in V. vulnificus proteins after stimulation with sewage from sewage drains. Using two-dimensional electrophoresis followed by MALDI-TOF MS/MS, 32 protein spots with significant differences in abundance were identified and characterized. These identified proteins were found to be involved in various functional categories, including catalysis, transport, membrane proteins progresses, receptor activity, energy metabolism, cytokine activity, and protein metabolism. The mRNA expression levels of 12 differential proteins were further assessed by qRT-PCR. Seven genes including carboxypeptidase, hemoglobin receptor, succinate dehydrogenase iron-sulfur subunit, ATP synthase subunit alpha, thioredoxin, succinyl-CoA synthetase subunit, and alanine dehydrogenase were downregulated upon stimulation, whereas the protein expression levels HupA receptor, type I secretion outer membrane protein, glutamine synthetase, superoxide dismutase, OmpU, and VuuA were upregulated. (1)H NMR spectra showed 18 dysregulated metabolites from V. vulnificus after the sewage stimulation and the pathogenicity was enhanced after that.
PMID: 28864971 [PubMed - as supplied by publisher]
Novel Interactions between Gut Microbiome and Host Drug-processing Genes Modify the Hepatic Metabolism of the Environmental Chemicals PBDEs.
Related Articles
Novel Interactions between Gut Microbiome and Host Drug-processing Genes Modify the Hepatic Metabolism of the Environmental Chemicals PBDEs.
Drug Metab Dispos. 2017 Sep 01;:
Authors: Li CY, Lee S, Cade S, Kuo LJ, Schultz IR, Bhatt DK, Prasad B, Bammler TK, Cui JY
Abstract
The gut microbiome is a novel frontier in xenobiotic metabolism. Polybrominated diphenyl ethers (PBDEs), especially BDE-47 and BDE-99, are among the most abundant and persistent environmental contaminants that produce a variety of toxicities. Little is known about how the gut microbiome affects the hepatic metabolism of PBDEs and the PBDE-mediated regulation of drug-processing genes (DPGs) in vivo. The goal of this study was to determine the role of gut microbiome in modulating the hepatic biotransformation of PBDEs. Nine-week-old male C57BL/6J conventional (CV) or germ free (GF) mice were treated with vehicle, BDE-47 or BDE-99 (100 mol/kg) for four days. Following BDE-47 treatment, GF mice had higher level of 5-OH-BDE-47 but lower levels of 4 other metabolites in liver than CV mice; whereas following BDE-99 treatment, GF mice had lower levels of 4 minor metabolites in liver than CV mice. RNA-Seq demonstrated that the hepatic expression of DPGs was regulated by both PBDEs and enterotypes. Under basal condition, the lack of gut microbiome up-regulated the Cyp2c subfamily but down-regulated the Cyp3a subfamily. Following PBDE exposure, certain DPGs were differentially regulated by PBDEs in a gut microbiome-dependent manner. Interestingly, the lack of gut microbiome augmented PBDE-mediated up-regulation of many DPGs, such as Cyp1a2 and Cyp3a11 in mouse liver, which was further confirmed by targeted metabolomics. The lack of gut microbiome also augmented the Cyp3a enzyme activity in liver. In conclusion, our study has unveiled a novel interaction between gut microbiome and the hepatic biotransformation of PBDEs.
PMID: 28864748 [PubMed - as supplied by publisher]
Metabolomics in Yeast.
Related Articles
Metabolomics in Yeast.
Cold Spring Harb Protoc. 2017 Sep 01;2017(9):pdb.top083576
Authors: Caudy AA, Mülleder M, Ralser M
Abstract
Budding yeast has from the beginning been a major eukaryotic model for the study of metabolic network structure and function. This is attributable to both its genetic and biochemical capacities and its role as a workhorse in food production and biotechnology. New inventions in analytical technologies allow accurate, simultaneous detection and quantification of metabolites, and a series of recent findings have placed the metabolic network at center stage in the physiology of the cell. For example, metabolism might have facilitated the origin of life, and in modern organisms it not only provides nutrients to the cell but also serves as a buffer to changes in the cellular environment, a regulator of cellular processes, and a requirement for cell growth. These findings have triggered a rapid and massive renaissance in this important field. Here, we provide an introduction to analysis of metabolomics in yeast.
PMID: 28864573 [PubMed - in process]
metabolomics; +20 new citations
20 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2017/09/02PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
Clinical Metabolomics and Glaucoma.
Clinical Metabolomics and Glaucoma.
Ophthalmic Res. 2017 Sep 01;:
Authors: Barbosa-Breda J, Himmelreich U, Ghesquière B, Rocha-Sousa A, Stalmans I
Abstract
Glaucoma is one of the leading causes of irreversible blindness worldwide. However, there are no biomarkers that accurately help clinicians perform an early diagnosis or detect patients with a high risk of progression. Metabolomics is the study of all metabolites in an organism, and it has the potential to provide a biomarker. This review summarizes the findings of metabolomics in glaucoma patients and explains why this field is promising for new research. We identified published studies that focused on metabolomics and ophthalmology. After providing an overview of metabolomics in ophthalmology, we focused on human glaucoma studies. Five studies have been conducted in glaucoma patients and all compared patients to healthy controls. Using mass spectrometry, significant differences were found in blood plasma in the metabolic pathways that involve palmitoylcarnitine, sphingolipids, vitamin D-related compounds, and steroid precursors. For nuclear magnetic resonance spectroscopy, a high glutamine-glutamate/creatine ratio was found in the vitreous and lateral geniculate body; no differences were detected in the optic radiations, and a lower N-acetylaspartate/choline ratio was observed in the geniculocalcarine and striate areas. Metabolomics can move glaucoma care towards a personalized approach and provide new knowledge concerning the pathophysiology of glaucoma, which can lead to new therapeutic options.
PMID: 28858875 [PubMed - as supplied by publisher]
Comparison of Chemical Profiles, Anti-Inflammatory Activity, and UPLC-Q-TOF/MS-Based Metabolomics in Endotoxic Fever Rats between Synthetic Borneol and Natural Borneol.
Comparison of Chemical Profiles, Anti-Inflammatory Activity, and UPLC-Q-TOF/MS-Based Metabolomics in Endotoxic Fever Rats between Synthetic Borneol and Natural Borneol.
Molecules. 2017 Aug 31;22(9):
Authors: Zou L, Zhang Y, Li W, Zhang J, Wang D, Fu J, Wang P
Abstract
Natural borneol (NB, called "Bingpian") is an important traditional Chinese medicine to restore consciousness, remove heat and relieve pain, all of which are inflammation-related diseases. Recently, due to the limited source of NB, synthetic borneol (SB) is widely used as a substitute for NB in clinics. However, little is known about the effects of SB instead of NB. Herein, the aim of the present study was to compare NB and SB on chemical profiles by gas chromatography-mass spectrometer (GC-MS) analysis, anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) metabolomic approaches in endotoxic fever induced in rats. Results showed that, in total, 13 volatile components could be identified in NB and SB by GC-MS analysis, in which a significant difference between them still existed. The main constituents in SB were iso-borneol and borneol, while borneol contributes to 98.96% of the amount in NB. Additionally, both NB and SB exhibited remarkable anti-inflammatory effects to reduce the level of inflammatory factors including NO, TNF-α and IL-6 in LPS-induced RAW 264.7 macrophages, and lower the high body temperature in rats with endotoxic fever induced by LPS. Moreover, it seems that NB exhibited higher efficacy than SB. The unequal bioactive efficiency between NB and SB was also indicated by means of non-targeting metabolomics. Based on UPLC-Q-TOF/MS technology, 12 biomarkers in the serum of fever rats were identified. Pathway analysis revealed that the anti-fever effect of NB and SB was related to regulating the abnormal glycerophospholipid, linoleic acid and alpha-linoleic acid metabolism pathways in the fever model. Results indicated that there was still a great difference between NB and SB involving chemical constituents, anti-inflammation activity and the ability to regulate the abnormal metabolism pathways of the fever model. Certainly, further studies are warranted to better understand the replacement rationale in medicinal application.
PMID: 28858264 [PubMed - in process]
12-OH-17,18-epoxyeicosatetraenoic acid alleviates eosinophilic airway inflammation in murine lungs.
12-OH-17,18-epoxyeicosatetraenoic acid alleviates eosinophilic airway inflammation in murine lungs.
Allergy. 2017 Aug 30;:
Authors: Mochimaru T, Fukunaga K, Miyata J, Matsusaka M, Masaki K, Kabata H, Ueda S, Suzuki Y, Goto T, Urabe D, Inoue M, Isobe Y, Arita M, Betsuyaku T
Abstract
BACKGROUND: Asthma is characterized by airway inflammation and obstruction with eosinophil infiltration into the airway. Arachidonic acid, an omega-6 fatty acid, is metabolized into cysteinyl leukotriene with pro-inflammatory properties for allergic inflammation, whereas the omega-3 fatty acid eicosapentaenoic acid (EPA) and its downstream metabolites are known to have anti-inflammatory effects. In this study, we investigated the mechanism underlying the counter-regulatory roles of EPA in inflamed lungs.
METHODS: Male C57BL6 mice were sensitized and challenged by OVA. After EPA treatment, we evaluated the cell count of BALF, mRNA expressions in the lungs by q-PCR, and the amounts of lipid mediators by Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidomics. We investigated the effect of the metabolite of EPA in vivo and vitro study.
RESULTS: EPA treatment reduced accumulation of eosinophils in the airway and decreased mRNA expression of selected inflammatory mediators in the lung. Lipidomics clarified the metabolomic profile in the lungs. Among EPA-derived metabolites, 12-hydroxy-17,18-epoxyeicosatetraenoic acid (12-OH-17,18-EpETE) was identified as one of the major biosynthesized molecules; the production of this molecule was amplified by EPA administration and allergic inflammation. Intravenous administration of 12-OH-17,18-EpETE attenuated airway eosinophilic inflammation through downregulation of C-C chemokine motif 11 (CCL11) mRNA expression in the lungs. In vitro, this molecule also inhibited the release of CCL11 from human airway epithelial cells stimulated with interleukin-4.
CONCLUSION: These results demonstrated that EPA alleviated airway eosinophilic inflammation through its conversion into bioactive metabolites. Additionally, our results suggest that 12-OH-17,18-EpETE is a potential therapeutic target for the management of asthma. This article is protected by copyright. All rights reserved.
PMID: 28857178 [PubMed - as supplied by publisher]
Mass-spectrometric detection of omega-oxidation products of aliphatic fatty acids in exhaled breath.
Mass-spectrometric detection of omega-oxidation products of aliphatic fatty acids in exhaled breath.
Anal Chem. 2017 Aug 31;:
Authors: Gaugg MT, Bruderer T, Nowak N, Eiffert L, Sinues PM, Kohler M, Zenobi R
Abstract
Omega-oxidation is a fatty acid degradation pathway that can occur alternatively to the dominant β oxidation. The dysregulation of fatty acid oxidation has been related with a variety of diseases, termed fatty acid oxidation disorders. This work shows evidence for real-time detection in exhaled breath of the complete series of saturated linear ω hydroxyalkanoic acids, ω-oxoalkanoic acids and alkanedioic acids with carbon chain lengths of 5 15. We present a comprehensive analytical workflow using on-line and subsequent off-line methods: secondary electrospray ionization mass spectrometry of exhaled breath and UHPLC-HRMS/MS experiments using exhaled breath condensate, respectively. By analyzing on-line breath measurements of 146 healthy individuals, we were able to obtain strong evidence for the correlation of these metabolite families. This enabled us to monitor the full ω-oxidation pathway in human exhaled breath. We could unambiguously identify these compounds, many of which have never been reported in breath so far. This comprehensive study on breath metabolites reinforces the notion of breath as a valuable source of information, which is underexploited in metabolomics.
PMID: 28856884 [PubMed - as supplied by publisher]
Bortezomib resistance in multiple myeloma is associated with increased serine synthesis.
Bortezomib resistance in multiple myeloma is associated with increased serine synthesis.
Cancer Metab. 2017;5:7
Authors: Zaal EA, Wu W, Jansen G, Zweegman S, Cloos J, Berkers CR
Abstract
BACKGROUND: The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified.
METHODS: We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ-resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients.
RESULTS: Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased.
CONCLUSIONS: Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance.
PMID: 28855983 [PubMed]
In silico analysis of glycinamide ribonucleotide transformylase inhibition by PY873, PY899 and DIA.
In silico analysis of glycinamide ribonucleotide transformylase inhibition by PY873, PY899 and DIA.
Saudi J Biol Sci. 2017 Sep;24(6):1155-1161
Authors: Batool S, Nawaz MS, Mushtaq G, Parvaiz F, Kamal MA
Abstract
In humans, purine de novo synthesis pathway consists of multi-functional enzymes. Nucleotide metabolism enzymes are potential drug targets for treating cancer and autoimmune diseases. Glycinamide ribonucleotide transformylase (GART) is one of the most important trifunctional enzymes involved in purine synthesis. Previous studies have demonstrated the role of folate inhibitors against tumor activity. In this present study, three components of GART enzyme were targeted as receptor dataset and in silico analysis was carried out with folate ligand dataset. To accomplish the task, Autodock 4.2 was used for determining the docking compatibilities of ligand and receptor dataset. Taken together, it has been suggested that folate ligands could be potentially used as inhibitors of GART.
PMID: 28855807 [PubMed]
Maximizing non-enzymatic methods for harvesting adipose-derived stem from lipoaspirate: technical considerations and clinical implications for regenerative surgery.
Maximizing non-enzymatic methods for harvesting adipose-derived stem from lipoaspirate: technical considerations and clinical implications for regenerative surgery.
Sci Rep. 2017 Aug 30;7(1):10015
Authors: Bellei B, Migliano E, Tedesco M, Caputo S, Picardo M
Abstract
In the past decade, adipose tissue has become a highly interesting source of adult stem cells for plastic surgery and regenerative medicine. The adipose source offers two options for the isolation of regenerative cells: the enzymatic digestion an expensive time-consuming procedure lacking a common standard operating protocol, or the non-enzymatic dissociation methods based on mechanical forces to break the processed adipose tissue. Here, we propose innovative inexpensive non-enzymatic protocols to collect and concentrate clinically useful regenerative cells from adipose tissue by centrifugation of the infranatant fraction of lipoaspirate as first step, usually discarded as a byproduct of the surgical procedure, and by fat shaking and wash as second enrichment step. The isolated cells were characterized according to the criteria proposed by the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy (ISCT) to define human mesenchymal stem cells, and the results were compared with matched lipoaspirate samples processed with collagenase. The results demonstrated the usability of these new procedures as an alternative to fat grafting for treating stem cell-depleted tissues and for specific application requiring minimal or null soft tissue augmentation, such as skin diseases including severe burn and post-oncological scaring, chronic non-healing wounds, and vitiligo.
PMID: 28855688 [PubMed - in process]
Retinol saturase coordinates liver metabolism by regulating ChREBP activity.
Retinol saturase coordinates liver metabolism by regulating ChREBP activity.
Nat Commun. 2017 Aug 30;8(1):384
Authors: Heidenreich S, Witte N, Weber P, Goehring I, Tolkachov A, von Loeffelholz C, Döcke S, Bauer M, Stockmann M, Pfeiffer AFH, Birkenfeld AL, Pietzke M, Kempa S, Muenzner M, Schupp M
Abstract
The liver integrates multiple metabolic pathways to warrant systemic energy homeostasis. An excessive lipogenic flux due to chronic dietary stimulation contributes to the development of hepatic steatosis, dyslipidemia and hyperglycemia. Here we show that the oxidoreductase retinol saturase (RetSat) is involved in the development of fatty liver. Hepatic RetSat expression correlates with steatosis and serum triglycerides (TGs) in humans. Liver-specific depletion of RetSat in dietary obese mice lowers hepatic and circulating TGs and normalizes hyperglycemia. Mechanistically, RetSat depletion reduces the activity of carbohydrate response element binding protein (ChREBP), a cellular hexose-phosphate sensor and inducer of lipogenesis. Defects upon RetSat depletion are rescued by ectopic expression of ChREBP but not by its putative enzymatic product 13,14-dihydroretinol, suggesting that RetSat affects hepatic glucose sensing independent of retinol conversion. Thus, RetSat is a critical regulator of liver metabolism functioning upstream of ChREBP. Pharmacological inhibition of liver RetSat may represent a therapeutic approach for steatosis.Fatty liver is one of the major features of metabolic syndrome and its development is associated with deregulation of systemic lipid and glucose homeostasis. Here Heidenreich et al. show that retinol saturase is implicated in hepatic lipid metabolism by regulating the activity of the transcription factor ChREBP.
PMID: 28855500 [PubMed - in process]
Effects of dietary sodium on metabolites: the Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding Study.
Effects of dietary sodium on metabolites: the Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding Study.
Am J Clin Nutr. 2017 Aug 30;:
Authors: Derkach A, Sampson J, Joseph J, Playdon MC, Stolzenberg-Solomon RZ
Abstract
Background: High sodium intake is known to increase blood pressure and is difficult to measure in epidemiologic studies.Objective: We examined the effect of sodium intake on metabolites within the DASH (Dietary Approaches to Stop Hypertension Trial)-Sodium Trial to further our understanding of the biological effects of sodium intake beyond blood pressure.Design: The DASH-Sodium Trial randomly assigned individuals to either the DASH diet (low in fat and high in protein, low-fat dairy, and fruits and vegetables) or a control diet for 12 wk. Participants within each diet arm received, in random order, diets containing high (150 nmol or 3450 mg), medium (100 nmol or 2300 mg), and low (50 nmol or 1150 mg) amounts of sodium for 30 d (crossover design). Fasting blood samples were collected at the end of each sodium intervention. We measured 531 identified plasma metabolites in 73 participants at the end of their high- and low-sodium interventions and in 46 participants at the end of their high- and medium-sodium interventions (N = 119). We used linear mixed-effects regression to model the relation between each log-transformed metabolite and sodium intake. We also combined the resulting P values with Fisher's method to estimate the association between sodium intake and 38 metabolic pathways or groups.Results: Six pathways were associated with sodium intake at a Bonferroni-corrected threshold of 0.0013 (e.g., fatty acid, food component or plant, benzoate, γ-glutamyl amino acid, methionine, and tryptophan). Although 82 metabolites were associated with sodium intake at a false discovery rate ≤0.10, only 4-ethylphenylsufate, a xenobiotic related to benzoate metabolism, was significant at a Bonferroni-corrected threshold (P < 10(-5)). Adjustment for coinciding change in blood pressure did not substantively alter the association for the top-ranked metabolites.Conclusion: Sodium intake is associated with changes in circulating metabolites, including gut microbial, tryptophan, plant component, and γ-glutamyl amino acid-related metabolites. This trial was registered at clinicaltrials.gov as NCT00000608.
PMID: 28855223 [PubMed - as supplied by publisher]
Reversion of High-level Mecillinam Resistance to Susceptibility in Escherichia coli During Growth in Urine.
Reversion of High-level Mecillinam Resistance to Susceptibility in Escherichia coli During Growth in Urine.
EBioMedicine. 2017 Aug 24;:
Authors: Thulin E, Thulin M, Andersson DI
Abstract
Mecillinam (amdinocillin) is a β-lactam antibiotic used to treat uncomplicated urinary tract infections (UTIs). We have previously shown that inactivation of the Escherichia coli cysB gene is the major cause of mecillinam resistance (Mec(R)) in clinical isolates. In this study, we used different E. coli strains (laboratory and clinical isolates) that were Mec(R) due to cysB mutations to determine how mecillinam susceptibility was affected during growth in urine compared to growth in the commonly used growth medium Mueller Hinton (MHB). We also examined mecillinam susceptibility when bacteria were grown in urine obtained from 48 different healthy volunteers. Metabolome analysis was done on the urine samples and the association between the mecillinam susceptibility patterns of the bacteria and urine metabolite levels was studied. Two major findings with clinical significance are reported. First, Mec(R)E. coli cysB mutant strains (both laboratory and clinical isolates) were always more susceptible to mecillinam when grown in urine as compared to laboratory medium, with many strains showing complete phenotypic susceptibility in urine. Second, the degree of reversion to susceptibility varied between urine samples obtained from different individuals. This difference was correlated with osmolality such that in urine with low osmolality the Mec(R) mutants were more susceptible to mecillinam than in urine with high osmolality. This is the first example describing conditional resistance where a genetically stable antibiotic resistance can be phenotypically reverted to susceptibility by metabolites present in urine. These findings have several important clinical implications regarding the use of mecillinam to treat UTIs. First, they suggest that mecillinam can be used to treat also those clinical strains that are identified as Mec(R) in standard laboratory tests. Second, the results suggest that testing of mecillinam susceptibility in the laboratory ought to be performed in media that mimics urine to obtain clinically relevant susceptibility testing results. Third, these findings imply that changes in patient behavior, such as increased water intake or use of diuretics to reduce urine osmolality and increased intake of cysteine, might induce antibiotic susceptibility in an infecting Mec(R)E. coli strain and thereby increase treatment efficiency.
PMID: 28855073 [PubMed - as supplied by publisher]
A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity.
A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity.
Cell Rep. 2017 Aug 29;20(9):2144-2155
Authors: Knobloch M, Pilz GA, Ghesquière B, Kovacs WJ, Wegleiter T, Moore DL, Hruzova M, Zamboni N, Carmeliet P, Jessberger S
Abstract
Hippocampal neurogenesis is important for certain forms of cognition, and failing neurogenesis has been implicated in neuropsychiatric diseases. The neurogenic capacity of hippocampal neural stem/progenitor cells (NSPCs) depends on a balance between quiescent and proliferative states. Here, we show that the rate of fatty acid oxidation (FAO) regulates the activity of NSPCs. Quiescent NSPCs show high levels of carnitine palmitoyltransferase 1a (Cpt1a)-dependent FAO, which is downregulated in proliferating NSPCs. Pharmacological inhibition and conditional deletion of Cpt1a in vitro and in vivo leads to altered NSPC behavior, showing that Cpt1a-dependent FAO is required for stem cell maintenance and proper neurogenesis. Strikingly, manipulation of malonyl-CoA, the metabolite that regulates levels of FAO, is sufficient to induce exit from quiescence and to enhance NSPC proliferation. Thus, the data presented here identify a shift in FAO metabolism that governs NSPC behavior and suggest an instructive role for fatty acid metabolism in regulating NSPC activity.
PMID: 28854364 [PubMed - in process]
Staging of colorectal cancer using serum metabolomics with (1)HNMR Spectroscopy.
Related Articles
Staging of colorectal cancer using serum metabolomics with (1)HNMR Spectroscopy.
Iran J Basic Med Sci. 2017 Jul;20(7):835-840
Authors: Vahabi F, Sadeghi S, Arjmand M, Mirkhani F, Hosseini E, Mehrabanfar M, Hajhosseini R, Iravani A, Bayat P, Zamani Z
Abstract
OBJECTIVES: Determination of stages of colon cancer is done by biopsy usually after surgery. Metabolomics is the study of all the metabolites using LC-MS and (1)HNMR spectroscopy with chemometric techniques. The stages of colon cancer were detected from patients' sera using (1)HNMR.
MATERIALS AND METHODS: Five ml blood was collected from 16 confirmed patients referred for colonoscopy. One group of eight patients were diagnosed with stage 0 to I colon cancer and the second group of 8 patients with II-IV stage colon cancer. Sera were sent for (1)HNMR. The differentiating metabolites were identified using HMDB and the metabolic cycles from Metaboanalyst.
RESULTS: Six metabolites of which pyridoxine levels lowered, and glycine, cholesterol, taurocholic acid, cholesteryl ester and deoxyinosine increased.
CONCLUSION: The different stages of cancer were identified by the main metabolic cycles such as primary bile acid biosynthesis, purine and vitamin B metabolic pathways and the glutathione cycle.
PMID: 28852450 [PubMed]
Insight into the metabolic mechanism of Diterpene Ginkgolides on antidepressant effects for attenuating behavioural deficits compared with venlafaxine.
Related Articles
Insight into the metabolic mechanism of Diterpene Ginkgolides on antidepressant effects for attenuating behavioural deficits compared with venlafaxine.
Sci Rep. 2017 Aug 29;7(1):9591
Authors: Bai S, Zhang X, Chen Z, Wang W, Hu Q, Liang Z, Shen P, Gui S, Zeng L, Liu Z, Chen J, Xie X, Huang H, Han Y, Wang H, Xie P
Abstract
Depression is a severe and chronic mental disorder, affecting about 322 million individuals worldwide. A recent study showed that diterpene ginkgolides (DG) have antidepressant-like effects on baseline behaviours in mice. Here, we examined the effects of DG and venlafaxine (VLX) in a chronic social defeat stress model of depression. Both DG and VLX attenuated stress-induced social deficits, despair behaviour and exploratory behaviour. To elucidate the metabolic changes underlying the antidepressive effects of DG and VLX, we investigated candidate functional pathways in the prefrontal cortex using a GC-MS-based metabolomics approach. Metabolic functions and pathways analysis revealed that DG and VLX affect protein biosynthesis and nucleotide metabolism to enhance cell proliferation, with DG having a weaker impact than VLX. Glutamate and aspartate metabolism played important roles in the antidepressant effects of DG and VLX. Tyrosine degradation and cell-to-cell signaling and interaction helped discriminate the two antidepressants. L-glutamic acid was negatively correlated, while hypoxanthine was positively correlated, with the social interaction ratio. Understanding the metabolic changes produced by DG and VLX should provide insight into the mechanisms of action of these drugs and aid in the development of novel therapies for depression.
PMID: 28852120 [PubMed - in process]
Benzo[a]pyrene-induced metabolic shift from glycolysis to pentose phosphate pathway in the human bladder cancer cell line RT4.
Related Articles
Benzo[a]pyrene-induced metabolic shift from glycolysis to pentose phosphate pathway in the human bladder cancer cell line RT4.
Sci Rep. 2017 Aug 29;7(1):9773
Authors: Verma N, Pink M, Boland S, Rettenmeier AW, Schmitz-Spanke S
Abstract
Benzo[a]pyrene (B[a]P), a well-known polyaromatic hydrocarbon, is known for its lung carcinogenicity, however, its role in bladder cancer development is still discussed. Comparative two-dimensional blue native SDS-PAGE analysis of protein complexes isolated from subcellular fractions of 0.5 µM B[a]P-exposed cells indicated a differential regulation of proteins involved in carbohydrate, fatty acid, and nucleotide metabolism, suggesting a possible metabolic flux redistribution. It appeared that B[a]P exposure led to a repression of enzymes (fructose-bisphosphate aldolase A, glucose-6-phosphate isomerase, lactate dehydrogenase) involved in glycolysis, and an up-regulation of proteins (glucose-6-phosphate 1-dehydrogenase, 6-phosphogluconolactonase) catalyzing the pentose phosphate pathway and one carbon metabolism (10-formyltetrahydrofolate dehydrogenase, bifunctional purine biosynthesis protein). Untargeted metabolomics further supported the proteomic data, a lower concentration of glycolytic metabolite was observed as compared to glutamine, xylulose and fatty acids. The analysis of the glutathione and NADPH/NADP(+) content of the cells revealed a significant increase of these cofactors. Concomitantly, we did not observe any detectable increase in the production of ROS. With the present work, we shed light on an early phase of the metabolic stress response in which the urothelial cells are capable of counteracting oxidative stress by redirecting the metabolic flux from glycolysis to pentose phosphate pathway.
PMID: 28851999 [PubMed - in process]
Characterization of a metabolomic profile associated with responsiveness to therapy in the acute phase of septic shock.
Related Articles
Characterization of a metabolomic profile associated with responsiveness to therapy in the acute phase of septic shock.
Sci Rep. 2017 Aug 29;7(1):9748
Authors: Cambiaghi A, Pinto BB, Brunelli L, Falcetta F, Aletti F, Bendjelid K, Pastorelli R, Ferrario M
Abstract
The early metabolic signatures associated with the progression of septic shock and with responsiveness to therapy can be useful for developing target therapy. The Sequential Organ Failure Assessment (SOFA) score is used for stratifying risk and predicting mortality. This study aimed to verify whether different responses to therapy, assessed as changes in SOFA score at admission (T1, acute phase) and 48 h later (T2, post-resuscitation), are associated with different metabolite patterns. We examined the plasma metabolome of 21 septic shock patients (pts) enrolled in the Shockomics clinical trial (NCT02141607). Patients for which SOFAT2 was >8 and Δ = SOFAT1 - SOFAT2 < 5, were classified as not responsive to therapy (NR, 7 pts), the remaining 14 as responsive (R). We combined untargeted and targeted mass spectrometry-based metabolomics strategies to cover the plasma metabolites repertoire as far as possible. Metabolite concentration changes from T1 to T2 (Δ = T2 - T1) were used to build classification models. Our results support the emerging evidence that lipidome alterations play an important role in individual patients' responses to infection. Furthermore, alanine indicates a possible alteration in the glucose-alanine cycle in the liver, providing a different picture of liver functionality from bilirubin. Understanding these metabolic disturbances is important for developing any effective tailored therapy for these patients.
PMID: 28851978 [PubMed - in process]