PubMed
Gas chromatography-mass spectrometry metabolomic study of lipopolysaccharides toxicity on rat basophilic leukemia cells.
Gas chromatography-mass spectrometry metabolomic study of lipopolysaccharides toxicity on rat basophilic leukemia cells.
Chem Biol Interact. 2017 Dec 21;:
Authors: Cui F, Zhu P, Ji J, Blaženović I, Gholami M, Zhang Y, Sun X
Abstract
Lipopolysaccharide (LPS) can lead to uncontrollable cytokine production, fatal sepsis syndrome and depression/multiple organ failure, as pathophysiologic demonstration. Various toxic effects of LPS have been extensively reported, mainly on the toxicity of LPS in cellular level, macrophages or tumor cells, etc. This work aimed on the impact of LPS on mast cell metabolism, which focused on LPS-induced cellular metabolic profiles. Gas chromatography-mass spectrometry (GC-MS) based metabolomics strategy was implemented for the endo-metabolites detection in rat basophilic leukemia (RBL-2H3) cells, treated with 10 μg/mL LPS for 24 h, along with multiple time-dose tests of cells viability/apoptosis. Significantly changes metabolites were mainly involved the metabolism of glycine, serine, threonine and the biosynthesis of phenylalanine, tyrosine, tryptophan and pentose phosphate pathway. The endo-metabolism results illustrated that LPS treatment led to downregulation of glycine, serine and threonine metabolism besides pentose phosphate pathway in RBL-2H3 cells. This novel insight into LPS cellular metabolism, provides some heuristic guidance for elucidating the underlying mechanism of LPS-mediated disease.
PMID: 29275087 [PubMed - as supplied by publisher]
Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders.
Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders.
Anaerobe. 2017 Dec 21;:
Authors: Kang DW, Ilhan ZE, Isern NG, Hoyt DW, Howsmon DP, Shaffer M, Lozupone CA, Hahn J, Adams JB, Krajmalnik-Brown R
Abstract
Evidence supporting that gut problems are linked to ASD symptoms has been accumulating both in humans and animal models of ASD. Gut microbes and their metabolites may be linked not only to GI problems but also to ASD behavior symptoms. Despite this high interest, most previous studies have looked mainly at microbial structure, and studies on fecal metabolites are rare in the context of ASD. Thus, we aimed to detect fecal metabolites that may be present at significantly different concentrations between 21 children with ASD and 23 neurotypical children and to investigate its possible link to human gut microbiome. Using NMR spectroscopy and 16S rRNA gene amplicon sequencing, we examined metabolite profiles and microbial compositions in fecal samples, respectively. Of the 59 metabolites detected, isopropanol concentrations were significantly higher in feces of children with ASD after multiple testing corrections. We also observed similar trends of fecal metabolites to previous studies; children with ASD have higher fecal p-cresol and possibly lower GABA concentrations. In addition, Fisher Discriminant Analysis (FDA) with leave-out-validation suggested that a group of metabolites-caprate, nicotinate, glutamine, thymine, and aspartate-may potentially function as a modest biomarker to separate ASD participants from the neurotypical group (78% sensitivity and 81% specificity). Consistent with our previous Arizona cohort study, we also confirmed lower gut microbial diversity and reduced relative abundances of Prevotella copri in children with ASD. After multiple testing corrections, we also learned that relative abundances of Feacalibacterium prausnitzii and Haemophilus parainfluenzae were lower in feces of children with ASD. Despite a relatively short list of fecal metabolites, the data in this study support that children with ASD have altered metabolite profiles in feces when compared with neurotypical children and warrant further investigation of metabolites in larger cohorts.
PMID: 29274915 [PubMed - as supplied by publisher]
A phylogenomic analysis of lichen-feeding tiger moths uncovers evolutionary origins of host chemical sequestration.
Related Articles
A phylogenomic analysis of lichen-feeding tiger moths uncovers evolutionary origins of host chemical sequestration.
Mol Phylogenet Evol. 2017 Dec 20;:
Authors: Scott Chialvo CH, Chialvo P, Holland JD, Anderson TJ, Breinholt JW, Kawahara AY, Zhou X, Liu S, Zaspel JM
Abstract
Host species utilize a variety of defenses to deter feeding, including secondary chemicals. Some phytophagous insects have evolved tolerance to these chemical defenses, and can sequester secondary defense compounds for use against their own predators and parasitoids. While numerous studies have examined plant-insect interactions, little is known about lichen-insect interactions. Our study focused on reconstructing the evolution of lichen phenolic sequestration in the tiger moth tribe Lithosiini (Lepidoptera: Erebidae: Arctiinae), the most diverse lineage of lichen-feeding moths, with 3,000 described species. We built an RNA-Seq dataset and examined the adult metabolome for the presence of phenolics. Using the transcriptomic dataset, we recover a well-resolved phylogeny of the Lithosiini, and determine that the metabolomes within species are more similar than those among species. Results from an initial ancestral state reconstruction suggest that the ability to sequester phenolics produced by a single chemical pathway preceded generalist sequestration of phenolics produced by multiple chemical pathways. We conclude that phenolics are consistently and selectively sequestered within Lithosiini. Furthermore, sequestration of compounds from a single chemical pathway may represent a synapomorphy of the tribe, and the ability to sequester phenolics produced by multiple pathways arose later. These findings expand on our understanding of the interactions between Lepidoptera and their lichen hosts.
PMID: 29274497 [PubMed - as supplied by publisher]
Advanced LC-MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food.
Related Articles
Advanced LC-MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food.
Anal Bioanal Chem. 2017 Dec 22;:
Authors: Malachová A, Stránská M, Václavíková M, Elliott CT, Black C, Meneely J, Hajšlová J, Ezekiel CN, Schuhmacher R, Krska R
Abstract
Liquid chromatography (LC) coupled with mass spectrometry (MS) is widely used for the determination of mycotoxins in cereals and cereal-based products. In addition to the regulated mycotoxins, for which official control is required, LC-MS is often used for the screening of a large range of mycotoxins and/or for the identification and characterization of novel metabolites. This review provides insight into the LC-MS methods used for the determination of co-occurring mycotoxins with special emphasis on multiple-analyte applications. The first part of the review is focused on targeted LC-MS approaches using cleanup methods such as solid-phase extraction and immunoaffinity chromatography, as well as on methods based on minimum cleanup (quick, easy, cheap, effective, rugged, and safe; QuEChERS) and dilute and shoot. The second part of the review deals with the untargeted determination of mycotoxins by LC coupled with high-resolution MS, which includes also metabolomics techniques to study the fate of mycotoxins in plants.
PMID: 29273904 [PubMed - as supplied by publisher]
[Molecular characterisation defines several subtypes of pancreatic ductal adenocarcinoma].
Related Articles
[Molecular characterisation defines several subtypes of pancreatic ductal adenocarcinoma].
Bull Cancer. 2017 Dec 19;:
Authors: Raffenne J, Cros J
Abstract
Multi-omics high throughput analyses lead to the description of multiple molecular subtypes of pancreatic adenocarcinoma with major prognostic impact for most of them. There is no consensual multilevel integrative classification yet like in colon or breast cancers. Genomic classifications have identified a tumor subtype (15% of the patients) with deficient homologous DNA repair-system leading to increase sensitivity to platinum-based therapies and possibly to PARP inhibitors and immunotherapies. Transcriptomic classifications are still debated but all have identified an aggressive subtype with a very poor prognosis, presumably unfit for a surgical approach. Finally, approaches based on metabolomic or proteomic profiling have identified subtypes with a particular sensitivity to compounds targeting the hallmarks metabolomics or oncogenic pathways of each subtype. These classifications were mostly based on tumor cell but the micro-environment is also very heterogeneous and several types of stroma will be described soon. Subtype determination in daily practice remains a major challenge as most technologies used to build these classifications are very expensive, requires dedicated bio-informatics analysis pipelines and are not adapted to routine samples that are mostly formal in fixed paraffin embedded biopsies, in which tumor cells are highly contaminated by the cell from the microenvironment and the clot.
PMID: 29273547 [PubMed - as supplied by publisher]
Exhaled breath condensate metabolome clusters for endotype discovery in asthma.
Related Articles
Exhaled breath condensate metabolome clusters for endotype discovery in asthma.
J Transl Med. 2017 Dec 22;15(1):262
Authors: Sinha A, Desiraju K, Aggarwal K, Kutum R, Roy S, Lodha R, Kabra SK, Ghosh B, Sethi T, Agrawal A
Abstract
BACKGROUND: Asthma is a complex, heterogeneous disorder with similar presenting symptoms but with varying underlying pathologies. Exhaled breath condensate (EBC) is a relatively unexplored matrix which reflects the signatures of respiratory epithelium, but is difficult to normalize for dilution.
METHODS: Here we explored whether internally normalized global NMR spectrum patterns, combined with machine learning, could be useful for diagnostics or endotype discovery. Nuclear magnetic resonance (NMR) spectroscopy of EBC was performed in 89 asthmatic subjects from a prospective cohort and 20 healthy controls. A random forest classifier was built to differentiate between asthmatics and healthy controls. Clustering of the spectra was done using k-means to identify potential endotypes.
RESULTS: NMR spectra of the EBC could differentiate between asthmatics and healthy controls with 80% sensitivity and 75% specificity. Unsupervised clustering within the asthma group resulted in three clusters (n = 41,11, and 9). Cluster 1 patients had lower long-term exacerbation scores, when compared with other two clusters. Cluster 3 patients had lower blood eosinophils and higher neutrophils, when compared with other two clusters with a strong family history of asthma.
CONCLUSION: Asthma clusters derived from NMR spectra of EBC show important clinical and chemical differences, suggesting this as a useful tool in asthma endotype-discovery.
PMID: 29273025 [PubMed - in process]
metabolomics; +16 new citations
16 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2017/12/23PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +16 new citations
16 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2017/12/22PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +16 new citations
16 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2017/12/22PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +17 new citations
17 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2017/12/21PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
metabolomics; +17 new citations
17 new pubmed citations were retrieved for your search.
Click on the search hyperlink below to display the complete search results:
metabolomics
These pubmed results were generated on 2017/12/21PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books.
Citations may include links to full-text content from PubMed Central and publisher web sites.
Enterohemorrhagic Escherichia coli outwits hosts through sensing small molecules.
Enterohemorrhagic Escherichia coli outwits hosts through sensing small molecules.
Curr Opin Microbiol. 2017 Dec 16;41:83-88
Authors: Carlson-Banning KM, Sperandio V
Abstract
Small molecules help intestinal pathogens navigate the complex human gastrointestinal tract to exploit favorable microhabitats. These small molecules provide spatial landmarks for pathogens to regulate synthesis of virulence caches and are derived from the host, ingested plant and animal material, and the microbiota. Their concentrations and fluxes vary along the length of the gut and provide molecular signatures that are beginning to be explored through metabolomics and genetics. However, while many small molecules have been identified and are reviewed here, there are undoubtedly others that may also profoundly affect how enteric pathogens infect their hosts.
PMID: 29258058 [PubMed - as supplied by publisher]
Simultaneous determination of thirteen different steroid hormones using micro UHPLC-MS/MS with on-line SPE system.
Simultaneous determination of thirteen different steroid hormones using micro UHPLC-MS/MS with on-line SPE system.
J Pharm Biomed Anal. 2017 Dec 12;150:258-267
Authors: Márta Z, Bobály B, Fekete J, Magda B, Imre T, Mészáros KV, Bálint M, Szabó PT
Abstract
Ultratrace analysis of sample components requires excellent analytical performance in terms of limits of quantitation (LOQ). Micro UHPLC coupled to sensitive tandem mass spectrometry provides state of the art solution for such analytical problems. Using on-line SPE with column switching on a micro UHPLC-MS/MS system allowed to decrease LOQ without any complex sample preparation protocol. The presented method is capable of reaching satisfactory low LOQ values for analysis of thirteen different steroid molecules from human plasma without the most commonly used off-line SPE or compound derivatization. Steroids were determined by using two simple sample preparation methods, based on lower and higher plasma steroid concentrations. In the first method, higher analyte concentrations were directly determined after protein precipitation with methanol. The organic phase obtained from the precipitation was diluted with water and directly injected into the LC-MS system. In the second method, low steroid levels were determined by concentrating the organic phase after steroid extraction. In this case, analytes were extracted with ethyl acetate and reconstituted in 90/10 water/acetonitrile following evaporation to dryness. This step provided much lower LOQs, outperforming previously published values. The method has been validated and subsequently applied to clinical laboratory measurement.
PMID: 29258045 [PubMed - as supplied by publisher]
Metabolomics of the Wolfram Syndrome 1 Gene (Wfs1) Deficient Mice.
Metabolomics of the Wolfram Syndrome 1 Gene (Wfs1) Deficient Mice.
OMICS. 2017 Dec;21(12):721-732
Authors: Porosk R, Terasmaa A, Mahlapuu R, Soomets U, Kilk K
Abstract
Wolfram syndrome 1 is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. Mutations in the WFS1 gene encoding the wolframin glycoprotein can lead to endoplasmic reticulum stress and unfolded protein responses in cells, but the pathophysiology at whole organism level is poorly understood. In this study, several organs (heart, liver, kidneys, and pancreas) and bodily fluids (trunk blood and urine) of 2- and 6-month old Wfs1 knockout (KO), heterozygote (HZ), and wild-type (WT) mice were analyzed by untargeted and targeted metabolomics using liquid chromatography-mass spectrometry. The key findings were significant perturbations in the metabolism of pancreas and heart before the onset of related clinical signs such as glycosuria that precedes hyperglycemia and thus implies a kidney dysfunction before the onset of classical diabetic nephropathy. The glucose use and gluconeogenesis in KO mice are intensified in early stages, but later the energetic needs are mainly covered by lipolysis. Furthermore, in young mice liver and trunk blood hypouricemia, which in time turns to hyperuricemia, was detected. In summary, we show that the metabolism in Wfs1-deficient mice markedly differs from the metabolism of WT mice in many aspects and discuss the future biological and clinical relevance of these observations.
PMID: 29257731 [PubMed - in process]
Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease.
Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease.
Sci Data. 2017 Dec 19;4:170190
Authors: Sambles CM, Salmon DL, Florance H, Howard TP, Smirnoff N, Nielsen LR, McKinney LV, Kjær ED, Buggs RJA, Studholme DJ, Grant M
Abstract
European common ash, Fraxinus excelsior, is currently threatened by Ash dieback (ADB) caused by the fungus, Hymenoscyphus fraxineus. To detect and identify metabolites that may be products of pathways important in contributing to resistance against H. fraxineus, we performed untargeted metabolomic profiling on leaves from five high-susceptibility and five low-susceptibility F. excelsior individuals identified during Danish field trials. We describe in this study, two datasets. The first is untargeted LC-MS metabolomics raw data from ash leaves with high-susceptibility and low-susceptibility to ADB in positive and negative mode. These data allow the application of peak picking, alignment, gap-filling and retention-time correlation analyses to be performed in alternative ways. The second, a processed dataset containing abundances of aligned features across all samples enables further mining of the data. Here we illustrate the utility of this dataset which has previously been used to identify putative iridoid glycosides, well known anti-herbivory terpenoid derivatives, and show differential abundance in tolerant and susceptible ash samples.
PMID: 29257137 [PubMed - in process]
Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome.
Related Articles
Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome.
Anal Bioanal Chem. 2017 Dec 18;:
Authors: Naser FJ, Mahieu NG, Wang L, Spalding JL, Johnson SL, Patti GJ
Abstract
Although it is common in untargeted metabolomics to apply reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) methods that have been systematically optimized for lipids and central carbon metabolites, here we show that these established protocols provide poor coverage of semipolar metabolites because of inadequate retention. Our objective was to develop an RPLC approach that improved detection of these metabolites without sacrificing lipid coverage. We initially evaluated columns recently released by Waters under the CORTECS line by analyzing 47 small-molecule standards that evenly span the nonpolar and semipolar ranges. An RPLC method commonly used in untargeted metabolomics was considered a benchmarking reference. We found that highly nonpolar and semipolar metabolites cannot be reliably profiled with any single method because of retention and solubility limitations of the injection solvent. Instead, we optimized a multiplexed approach using the CORTECS T3 column to analyze semipolar compounds and the CORTECS C8 column to analyze lipids. Strikingly, we determined that combining these methods allowed detection of 41 of the total 47 standards, whereas our reference RPLC method detected only 10 of the 47 standards. We then applied credentialing to compare method performance at the comprehensive scale. The tandem method showed more than a fivefold increase in credentialing coverage relative to our RPLC benchmark. Our results demonstrate that comprehensive coverage of metabolites amenable to reversed-phase separation necessitates two reconstitution solvents and chromatographic methods. Thus, we suggest complementing HILIC methods with a dual T3 and C8 RPLC approach to increase coverage of semipolar metabolites and lipids for untargeted metabolomics. Graphical abstract Analysis of semipolar and nonpolar metabolites necessitates two reversed-phase chromatography (RPLC) methods, which extend metabolome coverage more than fivefold for untargeted profiling. HILIC hydrophilic interaction liquid chromatography.
PMID: 29256075 [PubMed - as supplied by publisher]
Genome-scale model guided design of Propionibacterium for enhanced propionic acid production.
Related Articles
Genome-scale model guided design of Propionibacterium for enhanced propionic acid production.
Metab Eng Commun. 2018 Jun;6:1-12
Authors: Navone L, McCubbin T, Gonzalez-Garcia RA, Nielsen LK, Marcellin E
Abstract
Production of propionic acid by fermentation of propionibacteria has gained increasing attention in the past few years. However, biomanufacturing of propionic acid cannot compete with the current oxo-petrochemical synthesis process due to its well-established infrastructure, low oil prices and the high downstream purification costs of microbial production. Strain improvement to increase propionic acid yield is the best alternative to reduce downstream purification costs. The recent generation of genome-scale models for a number of Propionibacterium species facilitates the rational design of metabolic engineering strategies and provides a new opportunity to explore the metabolic potential of the Wood-Werkman cycle. Previous strategies for strain improvement have individually targeted acid tolerance, rate of propionate production or minimisation of by-products. Here we used the P. freudenreichii subsp. shermanii and the pan-Propionibacterium genome-scale metabolic models (GEMs) to simultaneously target these combined issues. This was achieved by focussing on strategies which yield higher energies and directly suppress acetate formation. Using P. freudenreichii subsp. shermanii, two strategies were assessed. The first tested the ability to manipulate the redox balance to favour propionate production by over-expressing the first two enzymes of the pentose-phosphate pathway (PPP), Zwf (glucose-6-phosphate 1-dehydrogenase) and Pgl (6-phosphogluconolactonase). Results showed a 4-fold increase in propionate to acetate ratio during the exponential growth phase. Secondly, the ability to enhance the energy yield from propionate production by over-expressing an ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK) and sodium-pumping methylmalonyl-CoA decarboxylase (MMD) was tested, which extended the exponential growth phase. Together, these strategies demonstrate that in silico design strategies are predictive and can be used to reduce by-product formation in Propionibacterium. We also describe the benefit of carbon dioxide to propionibacteria growth, substrate conversion and propionate yield.
PMID: 29255672 [PubMed]
Plasma lipidomics of tuberculosis patients: altered phosphatidylcholine remodeling.
Related Articles
Plasma lipidomics of tuberculosis patients: altered phosphatidylcholine remodeling.
Future Sci OA. 2018 Jan;4(1):FSO255
Authors: Wood PL, Tippireddy S, Feriante J
Abstract
Aim: Decreased circulating levels of lysophosphatidylcholines have been monitored in the serum of tuberculosis (TB) patients. However, the etiology of these findings has not been explored and other critical lung surfactant lipids have not been examined.
Materials & methods: We undertook a lipidomics analysis of 30 controls and 30 TB patients, utilizing a high-resolution mass spectrometric analytical platform that assays over 1800 lipids.
Findings: As previously reported, we found decrements in the plasma levels of lysophosphatidylcholines in TB patients. In addition, we report for the first time that there are increases in the plasma levels of phosphatidylcholines and phosphatidylglycerols in TB patients.
Conclusion: These data suggest that TB results in altered glycerophosphocholine remodeling involving deacylation-reacylation reactions at sn-2 of the glycerol backbone. Such alterations in lipid remodeling have the potential to exert negative effects on the function of lung surfactant, on signal transduction mechanisms and membrane structural lipid architecture in TB patients.
PMID: 29255627 [PubMed]
A scheme for a flexible classification of dietary and health biomarkers.
Related Articles
A scheme for a flexible classification of dietary and health biomarkers.
Genes Nutr. 2017;12:34
Authors: Gao Q, Praticò G, Scalbert A, Vergères G, Kolehmainen M, Manach C, Brennan L, Afman LA, Wishart DS, Andres-Lacueva C, Garcia-Aloy M, Verhagen H, Feskens EJM, Dragsted LO
Abstract
Biomarkers are an efficient means to examine intakes or exposures and their biological effects and to assess system susceptibility. Aided by novel profiling technologies, the biomarker research field is undergoing rapid development and new putative biomarkers are continuously emerging in the scientific literature. However, the existing concepts for classification of biomarkers in the dietary and health area may be ambiguous, leading to uncertainty about their application. In order to better understand the potential of biomarkers and to communicate their use and application, it is imperative to have a solid scheme for biomarker classification that will provide a well-defined ontology for the field. In this manuscript, we provide an improved scheme for biomarker classification based on their intended use rather than the technology or outcomes (six subclasses are suggested: food compound intake biomarkers (FCIBs), food or food component intake biomarkers (FIBs), dietary pattern biomarkers (DPBs), food compound status biomarkers (FCSBs), effect biomarkers, physiological or health state biomarkers). The application of this scheme is described in detail for the dietary and health area and is compared with previous biomarker classification for this field of research.
PMID: 29255495 [PubMed]
Metabolic changes of different high-resolution computed tomography phenotypes of COPD after budesonide-formoterol treatment.
Related Articles
Metabolic changes of different high-resolution computed tomography phenotypes of COPD after budesonide-formoterol treatment.
Int J Chron Obstruct Pulmon Dis. 2017;12:3511-3521
Authors: Wang C, Li JX, Tang D, Zhang JQ, Fang LZ, Fu WP, Liu L, Dai LM
Abstract
Background: Metabolomics is the global unbiased analysis of all the small-molecule metabolites within a biological system. Metabolic profiling of different high-resolution computed tomography (HRCT) phenotypes of COPD patients before and after treatment may identify discriminatory metabolites that can serve as biomarkers and therapeutic agents.
Patients and methods: 1H nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics was performed on a discovery set of plasma samples from 50 patients with stable COPD. Patients were assigned into two groups on the basis of HRCT findings including phenotype E (n=22) and phenotype M (n=28). After budesonide-formoterol treatment (160/4.5 µg ×2 inhalations twice daily for 3 months), clinical characteristics and metabolites were then compared between phenotype E pretreatment and posttreatment, phenotype M pretreatment and posttreatment, phenotype E pretreatment and phenotype M pretreatment, and phenotype E posttreatment and phenotype M posttreatment.
Results: Inhaled budesonide-formoterol therapy for both phenotype E (emphysema without bronchial wall thickening) and phenotype M (emphysema with bronchial wall thickening) was effective. However, phenotype E and phenotype M were different in response to therapy. Patients with phenotype M in response to therapeutic effects were significantly greater compared with phenotype E. Certain metabolites were identified, which were closely related to the treatment and phenotype. Metabolic changes in phenotype E or phenotype M after treatment may be involved with adenosine diphosphate (ADP), guanosine, choline, malonate, tyrosine, glycine, proline, l-alanine, l-valine, l-threonine leucine, uridine, pyruvic acid, acetone and metabolism disturbance. Metabolic differences between phenotype E and phenotype M in pretreatment and posttreatment covered glycine, d-glucose, pyruvic acid, succinate, lactate, proline, l-valine and leucine.
Conclusion: Bronchial wall thickening in COPD may be an indicator for predicting the better response to the treatment with bronchodilator and corticosteroid. The identification of metabolic alterations provides new insights into different HRCT phenotypes and therapeutic assessment of COPD.
PMID: 29255358 [PubMed - in process]