PubMed
Nontargeted Metabolomics Revealed Novel Association Between Serum Metabolites and Incident Acute Coronary Syndrome: A Mendelian Randomization Study
J Am Heart Assoc. 2023 Jun 29:e028540. doi: 10.1161/JAHA.122.028540. Online ahead of print.ABSTRACTBackground This study was performed to identify metabolites associated with incident acute coronary syndrome (ACS) and explore causality of the associations. Methods and Results We performed nontargeted metabolomics in a nested case-control study in the Dongfeng-Tongji cohort, including 500 incident ACS cases and 500 age- and sex-matched controls. Three metabolites, including a novel one (aspartylphenylalanine), and 1,5-anhydro-d-glucitol (1,5-AG) and tetracosanoic acid, were identified as associated with ACS risk, among which aspartylphenylalanine is a degradation product of the gut-brain peptide cholecystokinin-8 rather than angiotensin by the angiotensin-converting enzyme (odds ratio [OR] per SD increase [95% CI], 1.29 [1.13-1.48]; false discovery rate-adjusted P=0.025), 1,5-AG is a marker of short-term glycemic excursions (OR per SD increase [95% CI], 0.75 [0.64-to 0.87]; false discovery rate-adjusted P=0.025), and tetracosanoic acid is a very-long-chain saturated fatty acid (OR per SD increase [95% CI], 1.26 [1.10-1.45]; false discovery rate-adjusted P=0.091). Similar associations of 1,5-AG (OR per SD increase [95% CI], 0.77 [0.61-0.97]) and tetracosanoic acid (OR per SD increase [95% CI], 1.32 [1.06-1.67]) with coronary artery disease risk were observed in a subsample from an independent cohort (152 and 96 incident cases, respectively). Associations of aspartylphenylalanine and tetracosanoic acid were independent of traditional cardiovascular risk factors (P-trend=0.015 and 0.034, respectively). Furthermore, the association of aspartylphenylalanine was mediated by 13.92% from hypertension and 27.39% from dyslipidemia (P<0.05), supported by its causal links with hypertension (P<0.05) and hypertriglyceridemia (P=0.077) in Mendelian randomization analysis. The association of 1,5-AG with ACS risk was 37.99% mediated from fasting glucose, and genetically predicted 1,5-AG level was negatively associated with ACS risk (OR per SD increase [95% CI], 0.57 [0.33-0.96], P=0.036), yet the association was nonsignificant when further adjusting for fasting glucose. Conclusions These findings highlighted novel angiotensin-independent involvement of the angiotensin-converting enzyme in ACS cause, and the importance of glycemic excursions and very-long-chain saturated fatty acid metabolism.PMID:37382146 | DOI:10.1161/JAHA.122.028540
Potential components and mechanism of Liangxue Tuezi Mixture in treating Henoch-Schönlein purpura based on network pharmacology and metabolomics
Zhongguo Zhong Yao Za Zhi. 2023 Jun;48(12):3327-3344. doi: 10.19540/j.cnki.cjcmm.20230117.705.ABSTRACTUltra-performance liquid chromatography-quadrupole time of fight/mass spectrometry(UPLC-Q-TOF-MS) and UNIFI were employed to rapidly determine the content of the components in Liangxue Tuizi Mixture. The targets of the active components and Henoch-Schönlein purpura(HSP) were obtained from SwissTargetPrediction, Online Mendelian Inheritance in Man(OMIM), and GeneCards. A "component-target-disease" network and a protein-protein interaction(PPI) network were constructed. Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed for the targets by Omishare. The interactions between the potential active components and the core targets were verified by molecular docking. Furthermore, rats were randomly assigned into a normal group, a model group, and low-, medium-, and high-dose Liangxue Tuizi Mixture groups. Non-targeted metabolomics was employed to screen the differential metabolites in the serum, analyze possible metabolic pathways, and construct the "component-target-differential metabolite" network. A total of 45 components of Liangxue Tuizi Mixture were identified, and 145 potential targets for the treatment of HSP were predicted. The main signaling pathways enriched included resistance to epidermal growth factor receptor tyrosine kinase inhibitors, phosphatidylinositol 3-kinase/protein kinase B(PI3K-AKT), and T cell receptor. The results of molecular docking showed that the active components in Liangxue Tuizi Mixture had strong binding ability with the key target proteins. A total of 13 differential metabolites in the serum were screened out, which shared 27 common targets with active components. The progression of HSP was related to metabolic abnormalities of glycerophospholipid and sphingolipid. The results indicate that the components in Liangxue Tuizi Mixture mainly treats HSP by regulating inflammation and immunity, providing a scientific basis for rational drug use in clinical practice.PMID:37382017 | DOI:10.19540/j.cnki.cjcmm.20230117.705
Difference in liver injury induced by dictamnine between males and females: based on untargeted metabolomics
Zhongguo Zhong Yao Za Zhi. 2023 Jun;48(12):3317-3326. doi: 10.19540/j.cnki.cjcmm.20230119.401.ABSTRACTIn recent years, reports of adverse reactions related to traditional Chinese medicine(TCM) have been on the rise, especially some traditionally considered "non-toxic" TCM(such as Dictamni Cortex). This has aroused the concern of scholars. This study aims to explore the metabolomic mechanism underlying the difference in liver injury induced by dictamnine between males and females through the experiment on 4-week-old mice. The results showed that the serum biochemical indexes of liver function and organ coefficients were significantly increased by dictamnine(P<0.05), and hepatic alveolar steatosis was mainly observed in female mice. However, no histopathological changes were observed in the male mice. Furthermore, a total of 48 differential metabolites(such as tryptophan, corticosterone, and indole) related to the difference in liver injury between males and females were screened out by untargeted metabolomics and multivariate statistical analysis. According to the receiver operating characteristic(ROC) curve, 14 metabolites were highly correlated with the difference. Finally, pathway enrichment analysis indicated that disorders of metabolic pathways, such as tryptophan metabolism, steroid hormone biosynthesis, and ferroptosis(linoleic acid metabolism and arachidonic acid metabolism), may be the potential mechanism of the difference. Liver injury induced by dictamnine is significantly different between males and females, which may be caused by the disorders of tryptophan metabolism, steroid hormone biosynthesis, and ferroptosis pathways.PMID:37382016 | DOI:10.19540/j.cnki.cjcmm.20230119.401
Spatially Resolved Metabolites in Stable and Unstable Human Atherosclerotic Plaques Identified by Mass Spectrometry Imaging
Arterioscler Thromb Vasc Biol. 2023 Jun 29. doi: 10.1161/ATVBAHA.122.318684. Online ahead of print.ABSTRACTBACKGROUND: Impairments in carbohydrate, lipid, and amino acid metabolism drive features of plaque instability. However, where these impairments occur within the atheroma remains largely unknown. Therefore, we sought to characterize the spatial distribution of metabolites within stable and unstable atherosclerosis in both the fibrous cap and necrotic core.METHODS: Atherosclerotic tissue specimens from 9 unmatched individuals were scored based on the Stary classification scale and subdivided into stable and unstable atheromas. After performing mass spectrometry imaging on these samples, we identified over 850 metabolite-related peaks. Using MetaboScape, METASPACE, and Human Metabolome Database, we confidently annotated 170 of these metabolites and found over 60 of these were different between stable and unstable atheromas. We then integrated these results with an RNA-sequencing data set comparing stable and unstable human atherosclerosis.RESULTS: Upon integrating our mass spectrometry imaging results with the RNA-sequencing data set, we discovered that pathways related to lipid metabolism and long-chain fatty acids were enriched in stable plaques, whereas reactive oxygen species, aromatic amino acid, and tryptophan metabolism were increased in unstable plaques. In addition, acylcarnitines and acylglycines were increased in stable plaques whereas tryptophan metabolites were enriched in unstable plaques. Evaluating spatial differences in stable plaques revealed lactic acid in the necrotic core, whereas pyruvic acid was elevated in the fibrous cap. In unstable plaques, 5-hydroxyindoleacetic acid was enriched in the fibrous cap.CONCLUSIONS: Our work here represents the first step to defining an atlas of metabolic pathways involved in plaque destabilization in human atherosclerosis. We anticipate this will be a valuable resource and open new avenues of research in cardiovascular disease.PMID:37381983 | DOI:10.1161/ATVBAHA.122.318684
Application and development of systems biology in computer-aided drug design
Zhongguo Zhong Yao Za Zhi. 2023 Jun;48(11):2868-2875. doi: 10.19540/j.cnki.cjcmm.20230227.601.ABSTRACTWith the advances in medicine, people have deeply understood the complex pathogenesis of diseases. Revealing the mechanism of action and therapeutic effect of drugs from an overall perspective has become the top priority of drug design. However, the traditional drug design methods cannot meet the current needs. In recent years, with the rapid development of systems biology, a variety of new technologies including metabolomics, genomics, and proteomics have been used in drug research and development. As a bridge between traditional pharmaceutical theory and modern science, computer-aided drug design(CADD) can shorten the drug development cycle and improve the success rate of drug design. The application of systems biology and CADD provides a methodological basis and direction for revealing the mechanism and action of drugs from an overall perspective. This paper introduces the research and application of systems biology in CADD from different perspectives and proposes the development direction, providing reference for promoting the application.PMID:37381949 | DOI:10.19540/j.cnki.cjcmm.20230227.601
Natural history of GM1 gangliosidosis-Retrospective cohort study of 61 French patients from 1998 to 2019
J Inherit Metab Dis. 2023 Jun 29. doi: 10.1002/jimd.12646. Online ahead of print.ABSTRACTGM1 gangliosidosis is a rare lysosomal storage disorder associated with β-galactosidase enzyme deficiency. There are three types of GM1 gangliosidosis based on age of symptom onset, which correlate with disease severity. In 2019, we performed a retrospective multicentric study including all patients diagnosed with GM1 gangliosidosis in France since 1998. We had access to data for 61 of the 88 patients diagnosed between 1998 and 2019. There were 41 patients with type 1 (symptom onset ≤6 months), 11 with type 2a (symptom onset from 7 months to 2 years), 5 with type 2b (symptom onset from 2 to 3 years), and 4 with type 3 (symptom onset >3 years). The estimated incidence in France was 1/210,000. In patients with type 1, the first symptoms were hypotonia (26/41, 63%), dyspnea (7/41, 17%), and nystagmus (6/41, 15%), whereas in patients with type 2a these were psychomotor regression (9/11, 82%) and seizures (3/11, 27%). In types 2b and 3, the initial symptoms were mild, such as speech difficulties, school difficulties, and progressive psychomotor regression. Hypotonia was observed in all patients, except type 3. The mean overall survival was 23 months (95% confidence interval [CI]: 7, 39) for type 1 and 9.1 years (95% CI: 4.5, 13.5) for type 2a. To the best of our knowledge, this is one of the largest historical cohorts reported, which provides important information on the evolution of all types of GM1 gangliosidosis. These data could be used as a historical cohort in studies assessing potential therapies for this rare genetic disease. This article is protected by copyright. All rights reserved.PMID:37381921 | DOI:10.1002/jimd.12646
The gut microbiome and metabolome in kidney transplant recipients with normal and moderately decreased kidney function
Ren Fail. 2023 Dec;45(1):2228419. doi: 10.1080/0886022X.2023.2228419.ABSTRACTBACKGROUND: The kidney transplant recipients (KTRs) were diagnosed with Chronic Kidney Disease after transplantation (CKD-T). CKD-T can be affected by the microbial composition and metabolites. The present study integrates the analysis of gut microbiome and metabolites to further identify the characteristics of CKD-T.METHODS: We collected 100 fecal samples of KTRs and divided them into two groups according to the stage progression of CKD-T. Among them, 55 samples were analyzed by Hiseq sequencing, and 100 samples were used for non-targeted metabolomics analysis. The gut microbiome and metabolomics of KTRs were comprehensively characterized.RESULTS: As well as significant differences in gut microbiome diversity between the CKD G1-2T group and CKD G3T group. Eight flora including Akkermansia were found to be enriched in CKD G3T group. As compared with CKD G1-2T group, the relative abundance of some amino acid metabolism, glycerophospholipid metabolism, amino acid biosynthesis, carbohydrate metabolism and purine metabolism in CKD G3T group were differential expressed significantly. In addition, fecal metabolome analysis indicated that CKD G3T group had a unique metabolite distribution characteristic. Two differentially expressed metabolites, N-acetylornithine and 5-deoxy-5'-(Methylthio) Adenosine, were highly correlated with serum creatinine, eGFR and cystatin C. The enrichment of gut microbial function in CKD-T is correlated with the expression of gut metabolites.CONCLUSION: Gut microbiome and metabolites in the progression of CKD-T display some unique distribution and expression characteristics. The composition of the gut microbiome and their metabolites appears to be different between patients with CKD G3T and those with CKD G1-2T.PMID:37381833 | DOI:10.1080/0886022X.2023.2228419
Metabolomics of cerebrospinal fluid reveals prognostic biomarkers in pediatric status epilepticus
CNS Neurosci Ther. 2023 Jun 28. doi: 10.1111/cns.14312. Online ahead of print.ABSTRACTAIMS: Status epilepticus (SE) is the most common neurological emergency in pediatric patients. This study aimed to screen for prognostic biomarkers of SE in the cerebrospinal fluid (CSF) using metabolomics.METHODS: Ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS) was conducted to identify prognostic biomarkers in CSF metabolomics by comparing the poor outcome group (N = 13) with the good outcome group (N = 15) of children with SE. Differentially expressed metabolites were identified using Mann-Whitney U test corrected by Benjamini-Hochberg and partial least squares discriminant analysis (PLS-DA).RESULTS: The PLS-DA model identified and validated significant metabolic differences between the poor and good outcome groups of children with SE (PLS-DA with R2 Y = 0.992 and Q2 = 0.798). A total of 49 prognosis-related metabolites were identified. Of these metabolites, 20 including glutamyl-glutamine, 3-iodothyronamine, and L-fucose had an area under the curve (AUC) ≥ 80% in prognostic prediction of SE. The logistic regression model combining glutamyl-glutamine and 3-iodothyronamine produced an AUC value of 0.976, with a sensitivity of 0.863 and specificity of 0.956. Pathway analysis revealed that dysregulation of the citrate cycle (TCA) and arginine biosynthesis may contribute to poor SE prognosis.CONCLUSIONS: This study highlighted the prognosis-related metabolomic disturbances in the CSF of children with SE and identified potential prognostic biomarkers. A prognostic prediction model combining glutamyl-glutamine and 3-iodothyronamine with high predictive value was established.PMID:37381696 | DOI:10.1111/cns.14312
Intra-articular injection of secretome, derived from umbilical cord mesenchymal stem cell, enhances the regeneration process of cartilage in early-stage osteo-arthritis: an animal study
Acta Orthop. 2023 Jun 27;94:300-306. doi: 10.2340/17453674.2023.12359.ABSTRACTBACKGROUND AND PURPOSE: Mesenchymal stem cells (MSCs), both endogenous and exogenous, enhance chondrocyte proliferation by stimulating collagen type II. Secretome, an MSC derivate, has shown to also provide this mechanism through a paracrine effect. We aimed to evaluate the use of secretome and MSC in the management of early osteoarthritis (OA).ANIMALS AND METHODS: 19 (1 control) male sheep (Ovies aries), which were operated on with total lateral meniscectomy to induce knee OA, were divided into 3 groups: the secretome group, hyaluronic acid group, and MSC group. Each group was injected with the respective substances and was evaluated macroscopically and microscopically. The Osteoarthritis Research Society International (OARSI) score was calculated for all subjects and a descriptive and comparative statistical analysis was undertaken.RESULTS: The macroscopic analysis of the treated groups revealed better OARSI score in the secretome group compared with the other 2 groups. The secretome group showed a significantly better microscopic score compared with the hyaluronic acid group (mean difference [MD] 6.0, 95% confidence interval [CI] 0.15-12), but no significant difference compared with the MSC group (MD 1.0, CI -4.8 to 6.8).CONCLUSION: Intra-articular injection of secretome is effective in managing early-stage osteoarthritis in the animal model compared with hyaluronic acid and has similar efficacy to MSC injection.PMID:37377012 | PMC:PMC10301849 | DOI:10.2340/17453674.2023.12359
Multi-omics data reveals the disturbance of glycerophospholipid metabolism and linoleic acid metabolism caused by disordered gut microbiota in PM2.5 gastrointestinal exposed rats
Ecotoxicol Environ Saf. 2023 Jun 26;262:115182. doi: 10.1016/j.ecoenv.2023.115182. Online ahead of print.ABSTRACTThe relationships between fine particulate matter (PM2.5) exposure and health effects are complex and incompletely understood. Evidence suggests that PM2.5 exposure alters gut microbiota composition and metabolites, but the connections between these changes remain unclear. The aim of our study was to investigate how gut microbiota are involved in the systemic metabolic changes following PM2.5 gastrointestinal exposure. We used multi-omics approaches, including 16S rRNA sequencing and serum metabolomics, to identify alterations in gut microbes and metabolites of PM2.5-exposed rats. We then explored correlations between perturbed gut microbiota and metabolic changes, and conducted pathway analyses to determine critical metabolic pathways impacted by PM2.5 exposure. To verify links between gut microbiome and metabolome disruptions, we performed fecal microbiota transplantation (FMT) experiment. A total of 30 differential gut microbe taxa were identified between PM2.5 and control groups, primarily in Firmicutes, Acidobacteria, and Proteobacteria phyla. We also identified 30 differential metabolites, including glycerophospholipids, fatty acyls, amino acids and others. Pathway analysis revealed disruptions in glycerophospholipid metabolism, steroid hormone biosynthesis, and linoleic acid metabolism. Through FMT, we confirmed PM2.5 altered phosphatidylcholine and linoleic acid metabolism by changing specific gut bacteria. Our results suggest that PM2.5 gastrointestinal exposure triggers systemic metabolic changes by disrupting the gut microbiome, especially glycerophospholipid and linoleic acid metabolism pathways.PMID:37379664 | DOI:10.1016/j.ecoenv.2023.115182
Intrahepatic macrophage reprogramming associated with lipid metabolism in hepatitis B virus-related acute-on-chronic liver failure
J Transl Med. 2023 Jun 28;21(1):419. doi: 10.1186/s12967-023-04294-1.ABSTRACTBACKGROUND: Acute-on-chronic liver failure (ACLF) is a severe syndrome with high short-term mortality, but the pathophysiology still remains largely unknown. Immune dysregulation and metabolic disorders contribute to the progression of ACLF, but the crosstalk between immunity and metabolism during ACLF is less understood. This study aims to depict the immune microenvironment in the liver during ACLF, and explore the role of lipid metabolic disorder on immunity.METHODS: Single-cell RNA-sequencing (scRNA-seq) was performed using the liver non-parenchymal cells (NPCs) and peripheral blood mononuclear cells (PBMCs) from healthy controls, cirrhosis patients and ACLF patients. A series of inflammation-related cytokines and chemokines were detected using liver and plasma samples. The lipid metabolomics targeted free fatty acids (FFAs) in the liver was also detected.RESULTS: The scRNA-seq analysis of liver NPCs showed a significant increase of monocytes/macrophages (Mono/Mac) infiltration in ACLF livers, whereas the resident Kupffer cells (KCs) were exhausted. A characterized TREM2+ Mono/Mac subpopulation was identified in ACLF, and showed immunosuppressive function. Combined with the scRNA-seq data from PBMCs, the pseudotime analysis revealed that the TREM2+ Mono/Mac were differentiated from the peripheral monocytes and correlated with lipid metabolism-related genes including APOE, APOC1, FABP5 and TREM2. The targeted lipid metabolomics proved the accumulation of unsaturated FFAs associated with α-linolenic acid (α-LA) and α-LA metabolism and beta oxidation of very long chain fatty acids in the ACLF livers, indicating that unsaturated FFAs might promote the differentiation of TREM2+ Mono/Mac during ACLF.CONCLUSIONS: The reprogramming of macrophages was found in the liver during ACLF. The immunosuppressive TREM2+ macrophages were enriched in the ACLF liver and contributed to the immunosuppressive hepatic microenvironment. The accumulation of unsaturated FFAs in the ACLF liver promoted the reprogramming of the macrophages. It might be a potential target to improve the immune deficiency of ACLF patients through regulating lipid metabolism.PMID:37380987 | DOI:10.1186/s12967-023-04294-1
Venlafaxine's effect on resilience to stress is associated with a shift in the balance between glucose and fatty acid utilization
Neuropsychopharmacology. 2023 Jun 28. doi: 10.1038/s41386-023-01633-0. Online ahead of print.ABSTRACTBrain metabolism is a fundamental process involved in the proper development of the central nervous system and in the maintenance of the main higher functions in humans. As consequence, energy metabolism imbalance has been commonly associated to several mental disorders, including depression. Here, by employing a metabolomic approach, we aimed to establish if differences in energy metabolite concentration may underlie the vulnerability and resilience in an animal model of mood disorder named chronic mild stress (CMS) paradigm. In addition, we have investigated the possibility that modulation of metabolite concentration may represent a pharmacological target for depression by testing whether repeated treatment with the antidepressant venlafaxine may normalize the pathological phenotype by acting at metabolic level. The analyses were conducted in the ventral hippocampus (vHip) for its key role in the modulation of anhedonia, a core symptom of patients affected by depression. Interestingly, we showed that a shift from glycolysis to beta oxidation seems to be responsible for the vulnerability to chronic stress and that vHip metabolism contributes to the ability of the antidepressant venlafaxine to normalize the pathological phenotype, as shown by the reversal of the changes observed in specific metabolites. These findings may provide novel perspectives on metabolic changes that could serve as diagnostic markers and preventive strategies for the early detection and treatment of depression as well as for the identification of potential drug targets.PMID:37380799 | DOI:10.1038/s41386-023-01633-0
Spermidine from arginine metabolism activates Nrf2 and inhibits kidney fibrosis
Commun Biol. 2023 Jun 28;6(1):676. doi: 10.1038/s42003-023-05057-w.ABSTRACTKidney metabolism may be greatly altered in chronic kidney disease. Here we report that arginine metabolism is the most altered in unilateral ureteral obstruction (UUO)-induced fibrosis of the kidneys in metabolomic analysis. Spermidine is the most increased metabolite of arginine. In human glomerulonephritis, the amount of spermidine shown by immunostaining is associated with the amount of fibrosis. In human proximal tubule cells, spermidine induces nuclear factor erythroid 2-related factor 2 (Nrf2). Subsequently, fibrotic signals, such as transforming growth factor β1 secretion, collagen 1 mRNA, and oxidative stress, represented by a decrease in the mitochondrial membrane potential is suppressed by spermidine. UUO kidneys of Arg2 knockout mice show less spermidine and significantly exacerbated fibrosis compared with wild-type mice. Nrf2 activation is reduced in Arg2 knockout UUO kidneys. Spermidine treatment prevents significant fibrotic progression in Arg2 knockout mice. Spermidine is increased in kidney fibrosis, but further increases in spermidine may reduce fibrosis.PMID:37380734 | DOI:10.1038/s42003-023-05057-w
Elevated third trimester corticosteroid levels are associated with fewer offspring infections
Sci Rep. 2023 Jun 28;13(1):10461. doi: 10.1038/s41598-023-36535-0.ABSTRACTRespiratory infections are a leading cause of morbidity and mortality in early life, and recurrent infections increase the risk of developing chronic diseases. The maternal environment during pregnancy can impact offspring health, but the factors leading to increased infection proneness have not been well characterized during this period. Steroids have been implicated in respiratory health outcomes and may similarly influence infection susceptibility. Our objective was to describe relationships between maternal steroid levels and offspring infection proneness. Using adjusted Poisson regression models, we evaluated associations between sixteen androgenic and corticosteroid metabolites during pregnancy and offspring respiratory infection incidence across two pre-birth cohorts (N = 774 in VDAART and N = 729 in COPSAC). Steroid metabolites were measured in plasma samples from pregnant mothers across all trimesters of pregnancy by ultrahigh-performance-liquid-chromatography/mass-spectrometry. We conducted further inquiry into associations of steroids with related respiratory outcomes: asthma and lung function spirometry. Higher plasma corticosteroid levels in the third trimester of pregnancy were associated with lower incidence of offspring respiratory infections (P = 4.45 × 10-7 to 0.002) and improved lung function metrics (P = 0.020-0.036). Elevated maternal androgens were generally associated with increased offspring respiratory infections and worse lung function, with some associations demonstrating nominal significance at P < 0.05, but these trends were inconsistent across individual androgens. Increased maternal plasma corticosteroid levels in the late second and third trimesters were associated with lower infections and better lung function in offspring, which may represent a potential avenue for intervention through corticosteroid supplementation in late pregnancy to reduce offspring respiratory infection susceptibility in early life.Clinical Trial Registry information: VDAART and COPSAC were originally conducted as clinical trials; VDAART: ClinicalTrials.gov identifier NCT00920621; COPSAC: ClinicalTrials.gov identifier NCT00798226.PMID:37380711 | DOI:10.1038/s41598-023-36535-0
Increased glucose availability sensitizes pancreatic cancer to chemotherapy
Nat Commun. 2023 Jun 28;14(1):3823. doi: 10.1038/s41467-023-38921-8.ABSTRACTPancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to chemotherapy. Effective alternative therapies have yet to emerge, as chemotherapy remains the best available systemic treatment. However, the discovery of safe and available adjuncts to enhance chemotherapeutic efficacy can still improve survival outcomes. We show that a hyperglycemic state substantially enhances the efficacy of conventional single- and multi-agent chemotherapy regimens against PDAC. Molecular analyses of tumors exposed to high glucose levels reveal that the expression of GCLC (glutamate-cysteine ligase catalytic subunit), a key component of glutathione biosynthesis, is diminished, which in turn augments oxidative anti-tumor damage by chemotherapy. Inhibition of GCLC phenocopies the suppressive effect of forced hyperglycemia in mouse models of PDAC, while rescuing this pathway mitigates anti-tumor effects observed with chemotherapy and high glucose.PMID:37380658 | DOI:10.1038/s41467-023-38921-8
Combined GIP receptor and GLP1 receptor agonism attenuates NAFLD in male APOE∗3-Leiden.CETP mice
EBioMedicine. 2023 Jun 26;93:104684. doi: 10.1016/j.ebiom.2023.104684. Online ahead of print.ABSTRACTBACKGROUND: Combined glucose-dependent insulinotropic polypeptide receptor (GIPR) and glucagon-like peptide-1 receptor (GLP1R) agonism is superior to single GLP1R agonism with respect to glycemic control and weight loss in obese patients with or without type 2 diabetes. As insulin resistance and obesity are strong risk factors for nonalcoholic fatty liver disease (NAFLD), in the current study we investigated the effects of combined GIPR/GLP1R agonism on NAFLD development.METHODS: Male APOE∗3-Leiden.CETP mice, a humanized model for diabetic dyslipidemia and NAFLD when fed a high-fat high-cholesterol diet, received subcutaneous injections with either vehicle, a GIPR agonist, a GLP1R agonist, or both agonists combined every other day.FINDINGS: GIPR and GLP1R agonism reduced body weight and additively lowered fasting plasma levels of glucose, triglycerides and total cholesterol. Strikingly, we report an additive reduction in hepatic steatosis as evidenced by lower hepatic lipid content and NAFLD scores. Underlying the lipid-lowering effects were a reduced food intake and intestinal lipid absorption and an increased uptake of glucose and triglyceride-derived fatty acids by energy-combusting brown adipose tissue. Combined GIPR/GLP1R agonism also attenuated hepatic inflammation as evidenced by a decreased number of monocyte-derived Kupffer cells and a reduced expression of inflammatory markers. Together, the reduced hepatic steatosis and inflammation coincided with lowered markers of liver injury.INTERPRETATION: We interpretate that GIPR and GLP1R agonism additively attenuate hepatic steatosis, lower hepatic inflammation, ameliorate liver injury, together preventing NAFLD development in humanized APOE∗3-Leiden.CETP mice. We anticipate that combined GIPR/GLP1R agonism is a promising strategy to attenuate NAFLD progression in humans.FUNDING: This work was supported by a grant from the Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development, and the Royal Netherlands Academy of Sciences [CVON-GENIUS-II] to P.C.N.R., a Lilly Research Award Program [LRAP] Award to P.C.N.R. and S.K., a Dutch Heart Foundation [2017T016] grant to S.K., and an NWO-VENI grant [09150161910073] to M.R.B.; J.F.D.B. is supported by the Nutrition and Health initiative of the University of Groningen; Z.Y. is supported by a full-time PhD scholarship from the China Scholarship Council (201806850094 to Z.Y.).PMID:37379656 | DOI:10.1016/j.ebiom.2023.104684
Oocyte metabolic function, lipid composition, and developmental potential are altered by diet in older mares
Reproduction. 2022 Jan 28;163(4):183-198. doi: 10.1530/REP-21-0351. eCollection 2022 Apr 1.ABSTRACTDietary supplementation is the most feasible method to improve oocyte function and developmental potential in vivo. During three experiments, oocytes were collected from maturing, dominant follicles of older mares to determine whether short-term dietary supplements can alter oocyte metabolic function, lipid composition, and developmental potential. Over approximately 8 weeks, control mares were fed hay (CON) or hay and grain products (COB). Treated mares received supplements designed for equine wellness and gastrointestinal health, flaxseed oil, and a proprietary blend of fatty acid and antioxidant support (reproductive support supplement (RSS)) intended to increase antioxidant activity and lipid oxidation. RSS was modified for individual experiments with additional antioxidants or altered concentrations of n-3 to n-6 fatty acids. Oocytes from mares supplemented with RSS when compared to COB had higher basal oxygen consumption, indicative of higher aerobic metabolism, and proportionately more aerobic to anaerobic metabolism. In the second experiment, oocytes collected from the same mares prior to (CON) and after approximately 8 weeks of RSS supplementation had significantly reduced oocyte lipid abundance. In the final experiment, COB was compared to RSS supplementation, including RSS modified to proportionately reduce n-3 fatty acids and increase n-6 fatty acids. The ability of sperm-injected oocytes to develop into blastocysts was higher for RSS, regardless of fatty acid content, than for COB. We demonstrated that short-term diet supplementation can directly affect oocyte function in older mares, resulting in oocytes with increased metabolic activity, reduced lipid content, and increased developmental potential.PMID:37379450 | PMC:PMC8942336 | DOI:10.1530/REP-21-0351
DsbA-L deletion attenuates LPS-induced acute kidney injury by modulating macrophage polarization
Eur J Immunol. 2023 Jun 28:e2250071. doi: 10.1002/eji.202250071. Online ahead of print.ABSTRACTDisulfide bond A oxidoreductase-like protein (DsbA-L) drives acute kidney injury (AKI) by directly upregulating the expression of voltage-dependent anion-selective channels in proximal tubular cells. However, the role of DsbA-L in immune cells remains unclear. In this study, we used an LPS-induced AKI mouse model to assess the hypothesis that DsbA-L deletion attenuates LPS-induced AKI and explore the potential mechanism of DsbA-L action. After 24 hours of LPS exposure, the DsbA-L knockout group exhibited lower serum creatinine levels compared to the wild-type (WT) group. Furthermore, peripheral levels of the inflammatory cytokine interleukin-6 (IL-6) were decreased. Transcriptomic data analysis revealed a significant down-regulation in the IL-17 and tumor necrosis factor pathways in DsbA-L knockout mice following LPS induction. Metabolomic analysis suggested that arginine metabolism was significantly different between the WT and DsbA-L knockout groups after LPS treatment. Notably, the M1 polarization of macrophages in the kidneys of DsbA-L knockout AKI mice was significantly reduced. Expression of the transcription factors nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) was downregulated after DsbA-L knockout. Our results suggest that DsbA-L regulates LPS-mediated oxidative stress, promotes M1 polarization of macrophages and induces expression of inflammatory factors via the NF-κB/AP-1 pathway. This article is protected by copyright. All rights reserved.PMID:37379419 | DOI:10.1002/eji.202250071
Unlocking the secrets of the microbiome: exploring the dynamic microbial interplay with humans through metabolomics and their manipulation for synthetic biology applications
Biochem J. 2023 Jun 28;480(12):891-908. doi: 10.1042/BCJ20210534.ABSTRACTMetabolomics is a powerful research discovery tool with the potential to measure hundreds to low thousands of metabolites. In this review, we discuss the application of GC-MS and LC-MS in discovery-based metabolomics research, we define metabolomics workflows and we highlight considerations that need to be addressed in order to generate robust and reproducible data. We stress that metabolomics is now routinely applied across the biological sciences to study microbiomes from relatively simple microbial systems to their complex interactions within consortia in the host and the environment and highlight this in a range of biological species and mammalian systems including humans. However, challenges do still exist that need to be overcome to maximise the potential for metabolomics to help us understanding biological systems. To demonstrate the potential of the approach we discuss the application of metabolomics in two broad research areas: (1) synthetic biology to increase the production of high-value fine chemicals and reduction in secondary by-products and (2) gut microbial interaction with the human host. While burgeoning in importance, the latter is still in its infancy and will benefit from the development of tools to detangle host-gut-microbial interactions and their impact on human health and diseases.PMID:37378961 | DOI:10.1042/BCJ20210534
Rapid Detection of SARS-CoV-2 Variants of Concern by Genomic Surveillance Techniques
Adv Exp Med Biol. 2023;1412:491-509. doi: 10.1007/978-3-031-28012-2_27.ABSTRACTThis chapter describes the application of genomic, transcriptomic, proteomic, and metabolomic methods in the study of SARS-CoV-2 variants of concern. We also describe the important role of machine learning tools to identify the most significant biomarker signatures and discuss the latest point-of-care devices that can be used to translate these findings to the physician's office or to bedside care. The main emphasis is placed on increasing our diagnostic capacity and predictability of disease outcomes to guide the most appropriate treatment strategies.PMID:37378785 | DOI:10.1007/978-3-031-28012-2_27